首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 831 毫秒
1.
1. INTRODUCTION The discharge of effluent containing precious metal ions, which comes from electroplating, mining, smelting, and other industries, not only contaminate the environment where people live, but also cause the waste of natural resources. From…  相似文献   

2.
煤焦油沥青基炭纤维(CPCF)价格低廉含炭量高、易于活化,是制备纤维状活性炭(CPACF)的优良原料。本文讨论了CPCF的抗拉强度和活化条件对CPACF比表面积的影响。并同石油系沥青基炭纤维(PPCF)进行了比较。考察了不同比表面积的CPACF、PPACF和商品用颗粒活性炭(AC)对0.1mol/L碘溶液、0.005mol/L亚早兰溶液和293K下三氯甲烷饱和蒸汽的吸附性能,及以上三样品在293K  相似文献   

3.
The reduction adsorption of silver diamminonitrate on different kinds of activated carbonfibers (ACF) has been studied in this paper. The effect of different parameters, including adsorptiontemperature, concentrations of activation agents, and activation time on the silver adsorptioncapacities of activated carbon fibers has been investigated The results show that higher temperaturein which the silver complex interacts with ACF. or higher concentration of activation agent, will makehigher reduction adsorption capacities of ACFs. More over, ACFs activated with phosphoric acidhave higher reduction capacities than those activated with zinc chloride or steam.  相似文献   

4.
活性碳纤维对银离子还原吸附能力的改进   总被引:8,自引:0,他引:8  
活性碳纤维不仅对有机物有高的吸附容量,对贵金属离子也具有强的还原吸附能力,可将Pd(Ⅱ),Ag(Ⅰ),Au(Ⅲ)等离子还原为金属单质。因而可用于提取矿液或加收废液中的贵金属。由此,提高或改善贵金属在活性碳纤维上的还原吸附容量或分布形成,显得非常重要。本文研究了活性碳纤维制备条件、表面氧化改性、以有负载有机物等对活性碳纤维还原能力的影响。结果表明,(1)制备条件对剑麻基活性碳纤维的还原能力有很大的影响。用H3PO4或ZnCl2活化的活性碳纤维对银离子具有更高的还原吸附容量,分别可达250和700mg/g,约为水蒸汽活化剑麻基活性碳纤维对银离子还原吸附容量的2倍和5倍。(2)过氧化氢、高锰酸钾、或硝酸等无机氧化剂对活性碳纤维进行表面改性,也能提高活性碳纤维的还原能力。结果表明,虽然改性活性碳纤维的比表面积和孔体积下降10-20%左右,但基表面含氧量及含氧基团的种类发生了改变。这些改性活性碳纤维对Ag(NH3)2^ 的还原吸附量大幅度提高,可达550mg/g以上。推断表面改性在活性碳纤维表面创造了更多有利于碱性条件下发生氧化还原的活性点。(3)在活性碳纤维表面负载适当的有机物如亚甲基蓝、苯胺或对硝基苯酚,也能显著提高活性碳纤维对Ag(NH3)2^ 的还原吸附能力。  相似文献   

5.
In this study, activated carbon fibers (ACFs), onto which silver (Ag) nanoparticles have been introduced by an electroplating technique, were used to remove NO. Surface properties of the ACFs were determined by X-ray diffraction and scanning electron microscopy. N2 adsorption isotherms at 77 K were investigated by BET and t-plot methods to characterize the specific surface areas and pore volumes, and NO removal efficiency was confirmed by a gas chromatographic technique. As for the experimental results, Ag content on the ACFs increased with plating time. However, adsorption properties such as the BET specific surface area and the total pore volume were somewhat decreased in the presence of Ag nanoparticles. NO removal efficiency of all Ag-ACFs was higher than that of untreated ACFs and increased with Ag content. However, a decrease in the extent of NO removal was shown in the excessively plated ACFs, which might be associated with the blocking of the micropores in the carbon; therefore, an optimal Ag content needs to exist in the presence of initially well-developed micropores to lead to an increase in the efficient NO removal ability of the ACF.  相似文献   

6.
We impregnated Rayon-based activated carbon fibers (ACFs) by p-aminobenzoic acid (PABA) and systematically investigated their porous structure, surface chemistry, and formaldehyde removal behavior. Using standard nitrogen adsorption analysis, we found that the specific surface area, the micropore volume, and the total pore volume decreased with increasing concentration of PABA. Through elemental analysis and X-ray photoelectron spectroscopy, it was found that some nitrogen-containing functional groups presented on the surface of modified Rayon ACFs. The modified Rayon-based ACFs showed much higher adsorption capacity and longer breakthrough time for formaldehyde than did as-prepared Rayon-based ACF. We proposed that the improvement of formaldehyde removal by modified ACFs was attributed to the combined effects of physisorption contributed by pore structures and chemisorption contributed by the N-containing functional groups, whereas there was only physisorption between the as-prepared ACF and formaldehyde molecules.  相似文献   

7.
Iodine-doped activated carbon fibers (ACFs) were prepared by the iodine immersion method on pitch-based ACF. Then iodine-doped ACFs were heated in argon at 523 K for 4 h and at 673 K for 2 h. The iodine structure of the resultant iodine-doped ACFs was examined using X-ray photoelectron spectroscopy. The micropore structures were determined by N(2) adsorption at 77 K. The surface area and micropore volume of iodine-doped ACFs are less than those of pristine ACFs. However, the pore width does not change with the iodine doping. The effects of iodine doping on adsorption properties of ACFs for H(2)O and NO at 303 K were examined. The iodine doping affected remarkably the adsorptivities of ACFs for H(2)O and NO. In particular, iodine-doped ACFs treated at 673 K show enhanced adsorptivities for H(2)O and NO. This result suggests that iodine molecules doped on the micropores should be charged by heat treatment at 673 K.  相似文献   

8.
本文比较研究了五种不同工艺制备的活性碳纤维(ACF)的产率、比表面积、孔结构、对有机溶剂蒸汽的吸附和脱附性能、对水溶液中亚甲基兰、苯酚和碘的吸附性能以及它们的热稳定性。实验结果表明,水蒸气活化的ACF比化学活化的ACF有更大的比表面积,但前者产品产率较低而后者很高;不论水蒸气活化还是化学活化的ACF,它们对有机溶剂饱和蒸汽的吸附量都较高,脱附和再吸附的性能也都较好,对水溶液中的苯酚都有较好的吸附能力,但化学活化的ACF对亚甲基兰的吸附量显著小于水蒸气活化的ACF,同时磷酸活化的ACF-P对碘的吸附量也明显偏小;除了用KOH活化的ACF外,其它ACF都有很好的热稳定性。  相似文献   

9.
The preparation, characterization and ammonia and water adsorption properties of edge-rich carbon nanofibers (CNFs) were studied, including platelet CNFs (PCNFs) and cup-stacked CNFs (CSCNFs). Since PCNFs and CSCNFs have many chemically active exposed edges, functionalization by oxidizing the edges was carried out by ozone stream and by nitric acid. Transmission electron microscopy, N2 adsorption isotherms and temperature-programmed desorption analysis showed that the nitric acid treatment partly destroyed the graphite structure of the PCNFs and created acid functional groups and micropores, whereas the ozone treatment created functional groups without damaging the structure. Ammonia adsorption isotherms clarified that NH3 adsorption on PCNFs and CSCNFs occurred mainly on oxygen-containing groups, whereas the adsorption on activated carbon fibers (ACFs) occurred on both oxygen-containing groups and the carbon surface without the functional groups, and the CSCNFs showed larger amounts of adsorbed ammonia compared to the PCNFs. Especially at a relatively low pressure range (<0.2 atm), the PCNFs/CSCNFs/ACFs showed the same ammonia adsorption mechanism; that is, the one-to-one interaction between oxygen atoms in the functional groups and hydrogen atoms in ammonia molecules. In addition, the adsorption on the ACFs appeared to occur mainly by interaction with the carbon surface at relatively high pressure (0.3–1.0 atm). Our experimental results and previous findings suggest that NH3 adsorption on PCNFs is due mainly to NH…O hydrogen bonding between oxygen-containing groups and ammonia rather than to chemical bonding.  相似文献   

10.
Four types of activated carbon fibers (ACFs) with different specific surface areas (SSA) were used as electrode materials for water desalination using capacitive deionization (CDI). The carbon fibers were characterized by scanning electron microscopy and N(2) adsorption at 77 K, and the CDI process was investigated by studying the salt adsorption, charge transfer, and also the charge efficiency of the electric double layers that are formed within the micropores inside the carbon electrodes. It is found that the physical adsorption capacity of NaCl by the ACFs increases with increasing Brunauer-Emmett-Teller (BET) surface area of the fibers. However, the two ACF materials with the highest BET surface area have the lowest electrosorptive capability. Experiments indicate that the charge efficiency of the double layers is a key property of the ACF-based electrodes because the ACF material which has the maximum charge efficiency also shows the highest salt adsorption capacity for CDI.  相似文献   

11.
活性碳纤维的结构修饰及其吸附氙性能的研究   总被引:3,自引:0,他引:3  
活性炭纤维对氙的吸附容量与其孔结构密切相关,为了提高活性炭纤维对氙气的吸附容量,本文分别用亚甲基蓝、对硝基苯酚等有机物,或氯化钠、碘等无机化合物填充的方法修饰活性炭纤维的孔结构;以及利用高锰酸钾或硝酸等氧化处理修饰活性炭纤维的表面化学性质,同时,利用低温氮等温吸附表征了这些改性活性炭纤维的孔结构,以及通过光电子能谱表征了改性活性炭纤维的表面化学结构,上述化合物充填或氧化改性活性炭纤维对氙的吸附性能的研究结果表明,适量化合物填充,或合适浓度硝酸对活性炭纤维的表面处理,可以有效地修饰活性炭纤维的孔结构或改变活性炭纤维表面对氙的亲和力。因而可有效地提高改性活性炭纤维对氙的吸附容量。  相似文献   

12.
Carbon foams have gained significant attention due to their tuneable properties that enable a wide range of applications including catalysis, energy storage and wastewater treatment. Novel synthesis pathways enable novel applications via yielding complex, hierarchical material structure. In this work, activated carbon foams (ACFs) were produced from waste polyurethane elastomer templates using different synthesis pathways, including a novel one-step method. Uniquely, the produced foams exhibited complex structure and contained carbon microspheres. The ACFs were synthesized by impregnating the elastomers in an acidified sucrose solution followed by direct activation using CO2 at 1000 ℃. Different pyrolysis and activation conditions were investigated. The ACFs were characterized by a high specific surface area (SBET) of 2172 m2/g and an enhanced pore volume of 1.08 cm3/g. Computer tomography and morphological studies revealed an inhomogeneous porous structure and the presence of numerous carbon spheres of varying sizes embedded in the porous network of the three-dimensional carbon foam. X-ray diffraction (XRD) and Raman spectroscopy indicated that the obtained carbon foam was amorphous and of turbostratic structure. Moreover, the activation process enhanced the surface of the carbon foam, making it more hydrophilic via altering pore size distribution and introducing oxygen functional groups. In equilibrium, the adsorption of methylene blue on ACF followed the Langmuir isotherm model with a maximum adsorption capacity of 592 mg/g. Based on these results, the produced ACFs have potential applications as adsorbents, catalyst support and electrode material in energy storage systems.  相似文献   

13.
In this work, the adsorption of Pb(II) from aqueous solution was investigated on various types of activated carbon fibers (ACFs) manufactured from polyacrylonitrile and phenolic resin. The textural and physicochemical properties of the ACFs were determined by the N2-BET method and acid-base titration. The experimental adsorption equilibrium data of Pb(II) on the ACFs were obtained in a batch adsorber, and the Langmuir isotherm model better fitted the experimental data. The effects of the type of ACF and precursor of ACF, solution pH and temperature upon the adsorption of Pb(II) on the ACFs were examined in detail. The adsorption capacity was highly dependent upon the precursor of ACF. The Pb(II) adsorption capacity of the ACFs augmented when the solution pH and temperature were increased from 2 to 4 and from 288 to 308 K, respectively. The effect of the pH was attributed to the interactions between the surface of the ACF and Pb2+ ions present in the water solution. The Pb(II) adsorption capacity of the ACFs was enhanced by oxidation with HNO3 solution and the enhancement factor was between 1.1 and 1.4. The reversibility of the adsorption of Pb(II) was investigated by first adsorbing Pb(II) on an ACF and then desorbing the Pb(II). It was noticed that Pb(II) was substantially desorbed from ACF while reducing the solution pH to 2. It was concluded that the Pb(II) was mainly adsorbed on the ACFs by chemisorption, electrostatic interactions and ion exchange.  相似文献   

14.

The efficiency of activated carbons prepared from corncob, to remove asphaltenes from toluene modeled solutions, has been studied in this work. The activating agent effect over carbonaceous solid preparation , and also temperature effect on the asphaltenes adsorption on the prepared activated carbons, was studied. The asphaltene adsorption isotherms were determined, and the experimental data were analyzed applying the Langmuir, Freundlich, Redlich–Peterson, Toth and Radke–Prausnitz and Sips models. Redlich–Peterson model described the asphaltenes isotherm on the activated carbons better. The asphaltenes adsorption capacities at 25° for activated carbons were: 1305 mg g?1, 1654 mg g?1 and 559.1 mg g?1 for GACKOH, GACKP and GACH3PO4, respectively. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated from the adsorption isotherms in asphaltene solutions from toluene solutions, and it was found that the adsorption process was spontaneous and exothermic in nature. Kinetic parameters, reaction rate constant and equilibrium adsorption capacities were evaluated and correlated for each kinetic model. The results show that asphaltene adsorption is described by pseudo-second-order kinetics, suggesting that the adsorption process is chemisorption. The adsorption calorimetry was used to analyze the type of interaction between the asphaltenes and the activated carbons prepared in this work, and their values were compared with the enthalpic values obtained from the Clausius–Clapeyron equation.

  相似文献   

15.
In this study, the surfaces of activated carbon fibers (ACFs) were modified by nitric acid to introduce surface oxygen complexes and to observe the influence of those complexes on the propylamine adsorption of the ACFs. It was found that the oxygen complexes including carboxylic and phenolic groups were predominantly increased, resulting in the increase of total surface acidity. However, the specific surface areas and the total pore volumes of the modified ACFs were decreased by 5-8% due to the increased blocking (or demolition) of micropores in the presence of newly introduced complexes. Despite the decrease of textural properties, it was found that the amount of propylamine adsorbed by the modified ACFs was increased by approximately 17%. From the XPS results, it was observed that propylamine reacted with strong or weak acidic groups, such as COOH or OH, on the ACF surfaces, resulting in the formation of pyrrolic-, pyridonic-, or pyridine-like structures.  相似文献   

16.
载银磷酸活化剑麻基活性炭纤维的抗菌性能研究   总被引:5,自引:0,他引:5  
本文利用磷酸化方法,制备各种剑麻基活性炭纤维,并利用活性炭纤维的氧化还原特性及吸附性能,在其上负载金属银,研究并比较了这些载银活性炭纤维对大肠杆菌和金黄色葡萄球菌的杀灭作用,结果表明,磷酸浓度,活化方法,活化时间,纤维的比表面积等因素的均对材料的抗菌性能有一定的影响,磷酸活化的活性炭纤维表现出强的抗菌杀菌能力,高浓度磷酸活化后的纤维抗菌能力有所提高,并且抗菌能力随活化时间的延长而增加,抗菌前后纤维上负载的银未曾大量脱落,经5次抗菌试验后材料仍显示出很强的抗菌能力。  相似文献   

17.
PAN基活性炭纤维的表面及其孔隙结构解析   总被引:5,自引:0,他引:5  
通过氮吸附等温线、X射线光电子能谱以及扫描电子显微镜(SEM)对聚丙烯腈(PAN-Polyacrylonitrile)-基活性炭纤维(ACF-Activated Carbon Fiber)的表面和孔隙结构进行了分析,结果表明吸附测量可以提供有关碳质吸附剂的孔结构复杂性;通过XPS对PAN基ACF的表面官能团的种类及含量进行了表征,由SEM对PAN基ACF的表面以及断面的孔隙结构进行了直接观察,提供了有关孔隙结构的直接证据。  相似文献   

18.
This paper describes the production, characteristics, and efficacy of carbon microfibers and carbon nanofibers for the removal of phenol and Pb(2+) from water by adsorption. The first adsorbent produced in the current investigation contained the ammonia (NH(3)) functionalized micron-sized activated carbon fibers (ACF). Alternatively, the second adsorbent consisted of a multiscale web of ACF/CNF, which was prepared by growing carbon nanofibers (CNFs) on activated ACFs via catalytic chemical vapor deposition (CVD) and sonication, which was conducted to remove catalytic particles from the CNF tips and open the pores of the CNFs. The two adsorbents prepared in the present study, ACF and ACF/CNF, were characterized by several analytical techniques, including SEM-EDX and FT-IR. Moreover, the chemical composition, BET surface area, and pore-size distribution of the materials were determined. The hierarchal web of carbon microfibers and nanofibers displayed a greater adsorption capacity for Pb(2+) than ACF. Interestingly, the adsorption capacity of ammonia (NH(3)) functionalized ACFs for phenol was somewhat larger than that of the multiscale ACF/CNF web. Difference in the adsorption capacity of the adsorbents was attributed to differences in the size of the solutes and their reactivity towards ACF and ACF/CNF. The results indicated that ACF-based materials were efficient adsorbents for the removal of inorganic and organic solutes from wastewater.  相似文献   

19.
The adsorption isotherms of N(2) at -196 degrees C, CO(2) at 0 degrees C, and CH(4) at 25 degrees C on 35 activated carbons with a wide range of micropore volumes and pore size distributions have been compared to evaluate the density of adsorbed methane. Results indicate that methane is adsorbed in the micropores of the activated carbon with a density that is a function of the carbon porosity because methane is packed more compactly in narrow than in wide micropores. An experimental procedure is proposed to evaluate the density in both types of micropores as a function of pressure. Its application to these porous carbons indicates that density of adsorbed methane increases rapidly with pressure on narrow micropores, the increase becoming slower above 1.5 MPa. The value reached at 3 MPa is 0.21 g/cm(3), near that estimated as the limiting value, 0.23 g/cm(3). Density in wide micropores is low, 0.09 g/cm(3) at 3 MPa, but it continuously increases with pressure.  相似文献   

20.
In this work, the effect of immersion in silver nitrate solution on activated carbon fibers (ACFs) was investigated in relation to adsorption behavior and antibacterial activity of ACFs supported with silver (ACF/Ag). The pore and surface properties were studied in terms of BET volumetric measurement with nitrogen adsorption, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antibacterial activities of ACF/Ag were studied in broth dilution tests against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from a point of view of water purification. As an experimental result, the silver content of ACF/Ag increased with increasing concentration of silver nitrate. It was found that the micropore structure slightly decreased as the silver nitrate concentration increased. Otherwise, it was revealed that the ACF/Ag possessed a strong antibacterial activity and an inhibitory effect for the growing of E. coli and S. aureus, respectively. Silver content on ACF/Ag decreased rapidly because of rough morphology of silver particles in water erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号