首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes [Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI )], where L is (E)‐3‐furanyl‐2‐phenyl‐2‐propenoate, have been synthesized and structurally characterized by vibrational and NMR (1H, 13C and 119Sn) spectroscopic techniques in combination with mass spectrometric and elemental analyses. The IR data indicate that in both the di‐ and triorganotin(IV) carboxylates the ligand moiety COO acts as a bidentate group in the solid state. The 119Sn NMR spectroscopic data, 1J[119Sn,13C] and 2J[119Sn, 1H], coupling constants show a four‐coordinated environment around the tin atom in triorganotin(IV) and five‐coordinated in diorganotin(IV) carboxylates in noncoordinating solvents. The complexes have been screened against bacteria, fungi, and brine‐shrimp larvae to assess their biological activity. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:612–620, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20488  相似文献   

2.
Tariq  M.  Sirajuddin  M.  Ali  S.  Khalid  N.  Shah  N. A. 《Russian Journal of General Chemistry》2017,87(11):2690-2698

Six new organotin(IV) carboxylates, [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), [n-Bu3SnL] (5) and [Ph3SnL] (6), where L = 3-(4-ethoxyphenyl)-2-methylacrylate, have been synthesized and characterized by FT-IR, NMR spectroscopy and elemental analyses. The synthesized compounds were tested for in vitro antibacterial and antifungal activities. The complexes 4–6 demonstrated higher activity than the complexes 1–3. UV-Vis absorption spectroscopy indicated that the ligand and its complexes interacted with DNA via partial intercalation as well as minor groove binding.

  相似文献   

3.
Abstract

Six organotin(IV) complexes of type Me2SnL2, Bu2SnL2, and Ph3SnL [where L = indole-3-butyric acid (1, 2 and 3) or indole-3-propionic acid (4, 5 and 6)] have been synthesized by the reactions of the corresponding diorganotin(IV) oxide and triphenyltin(IV) hydroxide with respective indole-3-butyric acid (IBH) or indole-3-propionic acid (IPH) in the desired molar ratios of 1:2/1:1. All of the compounds have been characterized by elemental analysis, IR, 1H NMR, 13C NMR, and 119Sn NMR spectroscopy. Thermal studies of all synthesized complexes have been carried out using thermogravimetry (TG) technique under a nitrogen atmosphere. The thermal decompositions for compounds Me2SnL2 and Bu2SnL2 occurred in two steps, whereas in compounds Ph3SnL, it exhibited as three steps decomposition and resulted into the formation of pure SnO2. The complexes were also screened against three gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus) and three gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes) bacteria using minimum inhibition concentration (MIC) method, and all of these complexes showed significant antibacterial activity.

[Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental files: Additional text, tables, and figures.]  相似文献   

4.
Organotin(IV) dithiocarbamate complexes, RSnClL2 and R2SnL2 (R = Me, Bu, Ph, and L = N-ethyl-N-phenyldithiocarbamate), have been synthesized by the reaction of mono- and disubstituted organotin(IV) with ammonium dithiocarbamate. The complexes were characterized by elemental analyses, and spectroscopic techniques (1H, 13C NMR and FTIR). The structures of Me2SnL2 and Bu2SnL2 were further established by single crystal X-ray diffraction technique. The crystal structure analysis showed that both complexes (Me2SnL2 and Bu2SnL2) exist as monomers. One of the dithiocarbamate ligands formed a chelate, while the other dithiocarbamate bonded to the central tin atom through one of the sulfur atoms and the second sulfur atom existed as a pendant to form distorted trigonal bipyramidal geometry. The thermal stability of all the complexes was studied using simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC). The TG-DSC results showed that Me2SnL2, BuSnClL2, Bu2SnL2, and PhSnClL2 displayed similar decomposition pathway via isothiocyanate intermediate, while MeSnClL2 and Ph2SnL2 showed decomposition pathways different from the rest of the complexes. All the complexes resulted in SnS as the final product of the thermal decomposition process.  相似文献   

5.
The known organotin(IV) complexes with 2-mercaptopyrimidine (L) [Me2SnL2] (1), [Bun 2SnL2] (2), [Ph2SnL2] (3), and [Ph3SnL] (4) were synthesized using a new approach. The effect of the synthesized compounds on peroxidation of fatty acids (oleic and linoleic) was studied. Complexes 1–4 promote the peroxidation of oleic acid. Their effect on the enzymatic peroxidation of linoleic acid with lipoxygenase was compared with that of cisplatin and in vitro cytoxicity against sarcoma cancer cells was determined. The antiproliferative effect of complexes 2–4 was demonstrated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 737–743, April, 2007.  相似文献   

6.
A series of six organotin(IV) carboxylates [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), n-Bu3SnL (5) and [Ph3SnL] (6), where L = 3-(4-cyanophenyl) acrylic acid have been synthesized and characterized by elemental analysis, FT-IR and NMR (1H, 13C). The complex (4) was also analyzed by single crystal X-ray analysis which showed distorted trigonal bipyramidal geometry with polymeric bridging behavior. The complexes 16 were screened for antimicrobial activities and cytotoxicity. The results showed significant activity with few exceptions. The catalytic activity of complexes was assessed in transesterification reaction of Brassica campestris oil (triglycerides) to produce biodiesel (fatty acid methyl esters). The results showed that triorganotin(IV) complexes exhibited good catalytic activity than their di-analogues.  相似文献   

7.
The complexes Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI ), Bz2SnL2 ( VII ), and Ph3SnL ( VIII ), where “L” is ( E )‐3‐(3‐fluorophenyl)‐2‐phenyl‐2‐propenoate, have been prepared and structurally characterized by means of elemental analysis, infrared, mass, and multinuclear (1H, 13C, 119Sn) NMR spectral techniques. The spectroscopic results showed that the geometry around the Sn atom in triorganotin(IV) derivatives is four‐coordinated in noncoordinating solvent and behaves as five‐coordinated linear polymers with bridging carboxylate groups or five‐coordinated monomers, both acquiring trans‐R3SnO2 geometry for Sn in the solid state. While all the diorganotin(IV) derivatives may acquire trigonal bipyramidal structures in solution due to collapse of the Sn←OCO interaction and octahedral geometries in the solid state, which have been confirmed by the X‐ray crystallographic data of the compound III . The crystal structure of Et2SnL2 ( III ) has been determined by X‐ray crystallography and is found skew‐trapezoidal bipyramidal, which substantiates that the ligand acts as an anisobidentate chelating agent, thus rendering the Sn atom six coordinated. The crystal is monoclinic with space group C21/n. All the investigated compounds have also been screened for biocidal and cytotoxicity data. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:420–432, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20243  相似文献   

8.
Five new organotin(IV) complexes of composition [Bz2SnL1]n ( 1 ), [Bz3SnL1H⋅H2O] ( 2 ), [Me2SnL2⋅H2O] ( 3 ), [Me2SnL3] ( 4 ) and [Bz3SnL3H]n ( 5 ) (where L1 = (2S )‐2‐{[(E )‐(4‐hydroxypentan‐2‐ylidene)]amino}‐4‐methylpentanoate, L2 = (rac )‐2‐{[(E )‐1‐(2‐hydroxyphenyl)methylidene]amino}‐4‐methylpentanoate and L3 = (2S )‐ or (rac )‐2‐{[(E )‐1‐(2‐hydroxyphenyl)ethylidene]amino}‐4‐methylpentanoate) were synthesized and characterized using 1H NMR, 13C NMR, 119Sn NMR and infrared spectroscopic techniques. The crystal structure of 2 reveals a distorted trigonal‐bipyramidal geometry around the tin atom where the oxygen atoms of the carboxylate ligand and a water ligand occupy the axial positions, while the three benzyl ligands are located at the equatorial positions. On the other hand, the analogous derivative of enantiopure L3H ( 5 ) consists of polymeric chains, in which the ligand‐bridged tin atoms adopt the same trans ‐Bz3SnO2 trigonal‐bipyramidal configuration and are now coordinated to a phenolic oxygen atom instead of H2O. In 2 , the OH hydrogen of the ketoimine substituent has moved to the nearby nitrogen atom while in the salicylidene derivative 5 , the OH is located almost midway between the phenolic oxygen atom and the nitrogen atom of the CN group. For the dibenzyltin derivative 1 , a polymeric chain structure is observed as a result of a long intermolecular Sn⋅⋅⋅O bond involving the exocyclic carbonyl oxygen atom from the tridentate ligand of a neighbouring tin‐complex unit. The tin atom in this complex has distorted octahedral coordination geometry. In contrast, the racemic dimethyltin(IV) complexes 3 and 4 display discrete monomeric structures with a distorted octahedral‐ and trigonal‐bipyramidal geometry, respectively. The structures show that the coordination mode of the Schiff base ligand depends primarily on the number of bulky benzyl ligands (R) at the tin atom, as indeed found in the structures of related complexes where R = phenyl. With three bulky R groups, the tridentate chelating O,N,O coordination mode is preferred, whereas with fewer or less bulky R ligands, only the carboxylate and hydroxy groups are involved, which leads to polymers. Larvicidal efficacies of two of the new tribenzyltin(IV) complexes ( 2 and 5 ) were assessed on the second larval instar of Anopheles stephensi mosquito larvae and compared with two triphenyltin(IV) analogues, [Ph3SnL1H]n and [Ph3SnL3H]n . The results demonstrate that the compounds containing Sn–Ph ligands are more effective than those with Sn–Bz ligands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
New organotin(IV) carboxylates, [n-Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [n-Oct2SnL2] (4), [n-Bu3SnL] n (5), [Me3SnL] n (6), and [Ph3SnL] n (7), where L?=?3-(4-bromophenyl)-2-ethylacrylate, were synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR (1H, 13C, and 119Sn). Spectroscopic studies confirm coordination of L to the organotin moiety via COO group. Single-crystal X-ray analysis reveals bridging mode of coordination in 6. Packing diagram established a supramolecular cage-like structure for 6 due to Sn–O interactions (3.287?Å). Subsequent antimicrobial activities proved them to be active biologically.  相似文献   

10.
Nine organotin esters, Me2SnL21, Me3SnL 2, n-Bu2SnL23, n-Bu3SnL 4, Ph3SnL 5, (PhCH2)2SnL26, [(Me2SnL)2O]27, Et2SnL28 and n-Oct2SnL29, of (E)-3-(3-fluorophenyl)-2-(4-chlorophenyl)-2-propenoic acid, HL have been synthesized and characterized by elemental analysis, IR, Multinuclear NMR (1H, 13C and 119Sn) and mass spectrometry. The geometry around the tin atom has been deduced and compared both in solution and solid states. The crystal structure of compound 5 has been determined by X-ray single crystal analysis, which shows a tetrahedral geometry around the tin atom with space group . These compounds have also been screened for bactericidal, fungicidal activities and cytotoxicity data.  相似文献   

11.
A new series of diorganotin complexes of the type R2SnL (L1: N‐(2‐hydroxy‐5‐chlorophenyl)‐ 3‐ethoxysalicylideneimine, R = Me, (Me2SnL1), R = n‐Bu, (n‐Bu2SnL1), R = Ph, (Ph2SnL1), L2: N‐(2‐hydroxy‐4‐nitro‐5‐chlorophenyl)‐3‐ethoxysalicylideneimine, R = Ph, Ph2SnL2, L3: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐methoxysalicylideneimine, R = Me, (Me2SnL3), R = n‐Bu, (n‐Bu2SnL3), L4: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐ethoxysalicylideneimine, R = Me, (Me2SnL4), R = n‐Bu, (n‐Bu2SnL4)) were synthesized and characterized by elemental analysis, infrared (IR), 1H, and 13C NMR mass spectroscopic techniques, and electrochemical measurements. Ph2SnL1 and Ph2SnL2 were also characterized by X‐ray diffraction analysis and were found to show a fivefold C2NO2 coordination geometry nearly halfway between a trigonal bipyramidal and distorted square pyramidal arrangement. The C Sn C angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn‐13C) and 2J(117/119Sn‐1H) values from the 1H NMR and 13C NMR spectra. Biocidal activity tests against several micro‐organisms and some fungi indicate that all the complexes are mildly active against Gram (+) bacteria and the fungi, A. niger and inactive against Gram (−) bacteria. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:373–385, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20628  相似文献   

12.
The one pot reactions carried among ortho-aminophenol, R2SnO (R = Me or Ph) and acetyl acetone, 2-hydroxyacetophenone and 2-hydroxy-3-methylacetophenone led to six new diorganotin(IV) compounds Me2SnL1 (1), Ph2SnL1 (2), Me2SnL2 (3) Ph2SnL2 (4), Me2SnL3 (5) and Ph2SnL3 (6) (H2L1 = 2-(3-hydroxy-1-methyl-but-2-enylideneamino)-phenol, H2L2 and H2L3 = 2-[1-(2-hydroxyaryl)alkylideneamino]-phenol) in good yields. Combination of IR, 1H, 13C and 119Sn NMR and X-ray diffraction techniques along with elemental analyses evidenced the formation of penta-coordinated monomeric species. The crystal structures of ligand H2L1 and complexes 1, 3 and 4 were determined by single crystal X-ray diffraction study. In the solid state, the ligand H2L1 exists as keto-enamine tautomeric form. There are N-H…O intra-molecular hydrogen bonds between amine and carbonyl groups. Diorganotin(IV) complexes 1, 3 and 4 are monomers with TBP (trigonal bipyramidal) geometry surrounding the tin atom. The O, N, O- tridentate ligand places its two oxygen donating atoms in the axial positions, and the nitrogen atom occupies one equatorial position. The two R groups attached to tin occupy the other two equatorial positions. The solution structures were predicted by 119Sn NMR spectroscopy.  相似文献   

13.
The diorganotin(IV) complexes of methyl 2‐{4‐hydroxy‐3‐[(2‐hydroxy‐phenylimino)‐methyl]‐phenylazo}‐benzoate (H2L) were obtained by the reaction of ortho‐aminophenol, R2SnO (R = Me, nBu, or Ph) and methyl 2‐[(E)‐(3‐formyl‐4‐hydroxy)diazenyl]benzoate (H2PL2) in ethanol, which led to diorganotin(IV) compounds of composition [Me2SnL]2 ( 1 ), nBu2SnL ( 2 ), and Ph2SnL ( 3 ) in good yield. The 1H, 13C, and 119Sn NMR, IR, the mass spectrometry along with elemental analyses allowed establishing the structure of ligand (H2L) and compounds 1–3 . In all the three cases, 119Sn chemical shifts are indicators of five‐coordinated Sn atoms in a solution state. The crystal structures of ligand H2L and complexes 1 and 2 were determined by a single crystal X‐ray diffraction study. In the solid state, the ligand H2L exists as a keto‐enamine tautomeric form. The molecular structure of complex 1 in the solid state shows a distorted octahedral geometry around a tin atom due to additional coordination with an oxygen atom from a neighboring molecule leading to a four‐membered ring with Sn‐O···Sn‐O intermolecular coordination, leading to a dimeric species. On the other hand, complex 2 is a monomer with trigonal bipyramidal geometry surrounding the tin atom. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:457–465, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21037  相似文献   

14.
Triorganotin(IV) complexes of the 7-amino-2-(methylthio)[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid (HL), Me3SnL(H2O), (1), [n-Bu3SnL]2(H2O), (2), Ph3SnL(MeOH), (3), were synthesized by reacting the amino acid with organotin(IV) hydroxides or oxides in refluxing methanol. The complexes have been characterized by elemental analysis, 1H, 13C and 119Sn NMR, IR, Raman and 119Sn Mössbauer spectroscopic techniques. Single crystal X-ray diffraction data were obtained for compounds (2) and (3). Ph3SnL(MeOH) presents a trigonal bipyramidal structure with the organic groups on the equatorial plane and the axial positions occupied by a ligand molecule, coordinated to tin through the carboxylate, and a solvent molecule, MeOH. A similar structure is proposed for Me3SnL(H2O) on the basis of analytical and spectroscopic data. The tributyltin(IV) derivative, [n-Bu3SnL]2(H2O), is characterized by two different tin sites with similar tbp geometry featured by butyl groups on the equatorial plane. Sn(1) and Sn(2) atoms are axially bridged by a ligand molecule binding through the N(4) and the carboxylate group; the two coordination spheres are saturated by another ligand molecule, binding the metal through the carboxylate group, and a water molecule, respectively. Antimicrobial tests on compounds 1 and 2 showed in vitro activity against Gram-positive bacteria.  相似文献   

15.
Some five- and six-coordinated di- and tri-n-butyl tin(IV) complexes of the type Bu2SnL, Bu2SnL2 and Bu3SnL (where L is the anion of a monofunctional bidentate or bifunctional tridentate Schiff base) have been synthesized and characterised on the basis of microanalyses, molecular weight determinations, IR, NMR (1H, 13C, 119Sn) and 119Sn Mössbauer spectroscopy. These complexes are highly active towards bacteria.  相似文献   

16.
Organotin(IV) complexes with the general formulae R3ML [R: alkyl (Et, Ph and Bz), M: Sn and L: 1,3-bis(2- hydroxybenzylidene)thiourea were synthesized. The newly synthesized schiff base and its complexes were characterized by elemental analysis, melting point, molecular weight determination, IR and NMR [1H, 13C and 119Sn] spectral methods. In the light of these techniques, a tetrahedral geometry around the tin atom is proposed for the synthesized complexes. The experimental data have been compared with those in the literature which were found to coincide very well with the assigned structures. The ligands and their tin(IV) complexes were screened in vitro for their antibacterial activities. It was found that they possessed significant antibacterial activity and the effect of Ph3SnL was possibly superior to those of Et3SnL, Bz3SnL and ligand. These findings add new insights onto the synthesis of antibacterial drugs as the synthesized compounds showed promising antimicrobial activity.  相似文献   

17.
The diorganotin(IV) compounds, [Me2SnL2(OH2)]2 (1), [nBu2SnL2(OH2)]2 (2), [nBu2SnL1]3 · 0.5C3H6O (3), [nBu2SnL3]3 · 0.5C6H6 (4) and [Ph2SnL3]n · 0.5C6H6 (5) (L = carboxylic acid residue, i.e., 2-{[(E)-1-(2-oxyaryl)alkylidene]amino}acetate), were synthesized by treating the appropriate diorganotin(IV) dichloride with the potassium salt of the ligand in anhydrous methanol.The reaction of Ph2SnL2 (L = 2-{[(E)-1-(2-oxyphenyl)ethylidene]amino}acetate) with 1,10-phenanthroline (Phen) yielded a 1:1 adduct of composition, [Ph2SnL2(Phen)] (6).The crystal structures of 1-6 were determined.The crystal of 1 is composed of centrosymmetric dimers of the basic Me2SnL2(OH2) moiety, where the two Sn-centres are linked by two asymmetric Sn-O?Sn bridges involving the carboxylic acid O atom of the ligand and a long Sn?O distance of 3.174(2) Å.The dimers are further linked into columns by hydrogen bonds.The coordination geometry about the Sn atom is a distorted pentagonal bipyramid with the two methyl groups in axial positions.The structure of 2 is similar.The same Sn atom coordination geometry is observed in compound 3, which is a cyclic trinuclear[nBu2SnL1]3 compound. Each Sn atom is coordinated by the phenoxide O atom, one carboxylate O atom and the imino N atom from one ligand and both the exo- and endo-carboxylate O atoms (mean Sn-O(exo): 2.35 Å; Sn-O(endo): 2.96 Å) from an adjacent ligand to form the equatorial plane, while the two butyl groups occupy axial positions. Compound 4 was found to crystallize in two polymorphic forms. The Sn-complex in both forms has a trinuclear [nBu2SnL3]3 structural motif similar to that found in 3. In compound 5, distorted trigonal bipyramidal Ph2SnL3 units are linked into polymeric cis-bridged chains by a weak Sn?O interaction (3.491(2) Å) involving the exocyclic O atom of the tridentate ligand of a neighboring Sn-complex unit. This interaction completes a highly distorted octahedron about the Sn atom, where the weakly coordinated exocyclic O atom and one phenyl group are trans to one another. In contrast, a monomeric distorted pentagonal bipyramidal geometry is found for adduct 6 where the Sn-phenyl groups occupy the axial positions. The solution and solid-state structures are compared by using 119Sn NMR chemical shift data. Compounds 1-6 were also studied using ESI-MS and their positive- and negative-ions mass fragmentation patterns are discussed.  相似文献   

18.
A series of organotin(IV) thiocarboxylates have been synthesized with the general formula R2SnL2 and R3SnL (R = Ph2(I), Me3(II), n‐Bu3(III), Ph3(IV), Cy3(V), Me2(VI), n‐Bu2(VII), and L = piperidine‐1‐thiocarboxylic acid) in anhydrous toluene under the reflux conditions. The complexes were characterized by microanalysis, IR, 1H and 13C NMR, mass spectrometry, and XRD. NMR data revealed that thiocarboxylic acid acts as bidentate, and complexes exhibit the four‐coordinated geometry in solution state. In solid state, diorganotin complexes exhibit the hexa‐coordinated geometry whereas the triorganotin(IV) compounds show the five‐coordinated geometry. These complexes were also tested for their antimicrobial activity along with the ligand against different animals, plant pathogens, and Artemia salina. All complexes with few exceptions show high activity as compared to the ligand. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:664–674, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20380  相似文献   

19.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

20.
The organotin(IV) compounds, [Ph3SnL1H]n · nCCl4 (1), [Me2SnL2(OH2)] (2), [nBu2SnL2] (3), [Ph2SnL2]n (4), [Ph3SnL2H]n (5) and [Ph3SnL3H]n (7) (L1 = 2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}phenylpropionate and L2−3 = 2-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}phenylpropionate), were synthesized by treating the appropriate organotin(IV) chloride(s) with the potassium salt of the ligand in a suitable solvent, while [nBu2SnL3(OH2)] (6) was obtained by reacting the acid form of L3 (generated in situ) with nBu2SnO. These complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of 1 and 47 were determined. The crystal structures of complexes 1, 5 and 7 reveal that the complexes exist as polymeric chains in which the L-bridged Sn-atoms adopt a trans-R3SnO2 trigonal bipyramidal configuration with R groups in the equatorial positions and the axial locations occupied by a carboxylate oxygen from the carboxylate ligand and the alcoholic or phenolic oxygen of the next carboxylate ligand in the chain. The carboxylate ligands coordinate in the zwitterionic form with the alcoholic/phenolic proton moved to the nearby nitrogen atom. A polymeric zig-zag cis-bridged chain structure is observed for 4, without considering the weak Sn⋯O interaction, the Sn-atom having a slightly distorted trigonal bipyramidal coordination geometry with the two O atoms of the tridentate amino propionate ligand in axial positions. On the other hand, the structure of 6 reveals a monomeric molecule in which the Sn-atom has a distorted octahedral coordination geometry involving the tridentate carboxylate ligand, two n-butyl ligands occupying trans-positions and one water ligand. The in vitro cytotoxic activity of triphenyltin(IV) compounds, viz., 1, 5 and 7 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumor cell lines are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号