首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This paper is concerned with automated classification of Combinatorial Optimization Problem instances for instance-specific parameter tuning purpose. We propose the CluPaTra Framework, a generic approach to CLUster instances based on similar PAtterns according to search TRAjectories and apply it on parameter tuning. The key idea is to use the search trajectory as a generic feature for clustering problem instances. The advantage of using search trajectory is that it can be obtained from any local-search based algorithm with small additional computation time. We explore and compare two different search trajectory representations, two sequence alignment techniques (to calculate similarities) as well as two well-known clustering methods. We report experiment results on two classical problems: Travelling Salesman Problem and Quadratic Assignment Problem and industrial case study.  相似文献   

2.
《Optimization》2012,61(5):691-704
In 1972 Christofides introduced a lower bound for the Traveling Salesman Problem (TSP). The bound is based on solving repeatedly a Linear Assignment Problem. We relate the bound to the Complete Cycle Problem; as a consequence the correctness of the bound is easier to prove.

Further we give improvements for the bound in the symmetric case and we deal with the influence of the triangle equation together with the identification of non-optimal edges for the TSP. The improvements are illustrated by examples and computational results for large problems.  相似文献   

3.
This work proposes a Branch-cut-and-price (BCP) approach for the Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). We also deal with a particular case of the VRPSPD, known as the Vehicle Routing Problem with Mixed Pickup and Delivery. The BCP algorithm was tested in well-known benchmark instances involving up to 200 customers. Four instances were solved for the first time and some LBs were improved.  相似文献   

4.
5.
Summary We introduce a generalization of the well-know Uncapacitated Facility Location Problem, in which clients can be served not only by single facilities but also by sets of facilitities. The problem, calledGaneralized Uncapacitated Facility Lacition Problem (GUFLP), was inspired by the Index Selection Problem in physical database design. We for mulate GUFLP as a Set Packing Problem, showing that our model contains all the clique inequalities (in polynomial number). Moreover, we describe and exact separation procedure for odd-hole inequalities, based on the particular structure of the problem. These results are used within a branch-and-cut algorithm for the exact solution of GUFLP. Computational results on two different classes of test problems are given.  相似文献   

6.
We study the Multi-Depot Multiple Traveling Salesman Problem (MDMTSP), which is a variant of the very well-known Traveling Salesman Problem (TSP). In the MDMTSP an unlimited number of salesmen have to visit a set of customers using routes that can be based on a subset of available depots. The MDMTSP is an NP-hard problem because it includes the TSP as a particular case when the distances satisfy the triangular inequality. The problem has some real applications and is closely related to other important multi-depot routing problems, like the Multi-Depot Vehicle Routing Problem and the Location Routing Problem. We present an integer linear formulation for the MDMTSP and strengthen it with the introduction of several families of valid inequalities. Certain facet-inducing inequalities for the TSP polyhedron can be used to derive facet-inducing inequalities for the MDMTSP. Furthermore, several inequalities that are specific to the MDMTSP are also studied and proved to be facet-inducing. The partial knowledge of the polyhedron has been used to implement a Branch-and-Cut algorithm in which the new inequalities have been shown to be very effective. Computational results show that instances involving up to 255 customers and 25 possible depots can be solved optimally using the proposed methodology.  相似文献   

7.
8.
We propose a prototypical Split Inverse Problem (SIP) and a new variational problem, called the Split Variational Inequality Problem (SVIP), which is a SIP. It entails finding a solution of one inverse problem (e.g., a Variational Inequality Problem (VIP)), the image of which under a given bounded linear transformation is a solution of another inverse problem such as a VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert space and then discuss special cases, some of which are new even in Euclidean space.  相似文献   

9.
In this paper we introduce the Personnel Task Scheduling Problem (PTSP) and provide solution algorithms for a variant of this problem known as the Shift Minimisation Personnel Task Scheduling Problem (SMPTSP). The PTSP is a problem in which a set of tasks with fixed start and finish times have to be allocated to a heterogenous workforce. Personnel work in shifts with fixed start and end times and have skills that enable them to perform some, but not all tasks. In other words, some personnel are qualified to only perform a subset of all tasks. The objective is to minimise the overall cost of personnel required to perform the given set of tasks. In this paper we introduce a special case in which the only cost incurred is due to the number of personnel (shifts) that are used. This variant of the PTSP is referred to as the Shift Minimisation Personnel Task Scheduling Problem (SMPTSP). While our motivation is a real-life Personnel Task Scheduling Problem, the formulation may also be applied to machine shop scheduling. We review the existing literature, provide mathematical formulations, and develop a heuristic approach for the SMPTSP.  相似文献   

10.
We address the Capacitated Arc Routing Problem with Stochastic Demands (CARPSD), which we formulate as a Set Partitioning Problem. The CARPSD is solved by a Branch-and-Price algorithm, which we apply without graph transformation. The demand’s stochastic nature is incorporated into the pricing problem. Computational results are reported.  相似文献   

11.
The Precedence Constrained Generalized Traveling Salesman Problem (PCGTSP) combines the Generalized Traveling Salesman Problem (GTSP) and the Sequential Ordering Problem (SOP). We present a novel branching technique for the GTSP which enables the extension of a powerful pruning technique. This is combined with some modifications of known bounding methods for related problems. The algorithm manages to solve problem instances with 12–26 groups within a minute, and instances with around 50 groups which are denser with precedence constraints within 24 h.  相似文献   

12.
We deal with the problem of minimizing the expectation of a real valued random function over the weakly Pareto or Pareto set associated with a Stochastic Multi-objective Optimization Problem, whose objectives are expectations of random functions. Assuming that the closed form of these expectations is difficult to obtain, we apply the Sample Average Approximation method in order to approach this problem. We prove that the Hausdorff–Pompeiu distance between the weakly Pareto sets associated with the Sample Average Approximation problem and the true weakly Pareto set converges to zero almost surely as the sample size goes to infinity, assuming that our Stochastic Multi-objective Optimization Problem is strictly convex. Then we show that every cluster point of any sequence of optimal solutions of the Sample Average Approximation problems is almost surely a true optimal solution. To handle also the non-convex case, we assume that the real objective to be minimized over the Pareto set depends on the expectations of the objectives of the Stochastic Optimization Problem, i.e. we optimize over the image space of the Stochastic Optimization Problem. Then, without any convexity hypothesis, we obtain the same type of results for the Pareto sets in the image spaces. Thus we show that the sequence of optimal values of the Sample Average Approximation problems converges almost surely to the true optimal value as the sample size goes to infinity.  相似文献   

13.
Smale's 17th Problem asks “Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average [for a suitable probability measure on the space of inputs], in polynomial time with a uniform algorithm?” We present a uniform probabilistic algorithm for this problem and prove that its complexity is polynomial. We thus obtain a partial positive solution to Smale's 17th Problem.  相似文献   

14.
In this paper we study the polyhedron associated with the General Routing Problem (GRP). This problem, first introduced by Orloff in 1974, is a generalization of both the Rural Postman Problem (RPP) and the Graphical Traveling Salesman Problem (GTSP) and, thus, is NP -hard. We describe a formulation of the problem such that from every non-trivial facet-inducing inequality for the RPP and GTSP polyhedra, we obtain facet-inducing inequalities for the GRP polyhedron. We describe a new family of facet-inducing inequalities for the GRP, the honeycomb constraints, which seem to be very useful for solving GRP and RPP instances. Finally, new classes of facets obtained by composition of facet-inducing inequalities are presented.  相似文献   

15.
Let A and C denote real n × n matrices. Given real n-vectors x1, ... ,xm, m ≤ n, and a set of numbers L = {λ1,λ2,... ,λm}. We describe (I) the set (?) of all real n × n bisymmetric positive seidefinite matrices A such that Axi is the "best" approximate to λixi, i = 1,2,...,m in Frobenius norm and (II) the Y in set (?) which minimize Frobenius norm of ||C - Y||.An existence theorem of the solutions for Problem I and Problem II is given and the general expression of solutions for Problem I is derived. Some sufficient conditions under which Problem I and Problem II have an explicit solution is provided. A numerical algorithm of the solution for Problem II has been presented.  相似文献   

16.
We consider a ship subject to kinematic, dynamic, and moment equations and steered via rudder under the assumptions that the rudder angle and rudder angle time rate are subject to upper and lower bounds. We formulate and solve four Mayer problems of optimal control, the optimization criterion being the minimum time.Problems P1 and P2 deal with course change maneuvers. In Problem P1, a ship initially in quasi-steady state must reach the final point with a given yaw angle and zero yaw angle time rate. Problem P2 differs from Problem P1 in that the additional requirement of quasi-steady state is imposed at the final point.Problems P3 and P4 deal with sidestep maneuvers. In Problem P3, a ship initially in quasi-steady state must reach the final point with a given lateral distance, zero yaw angle, and zero yaw angle time rate. Problem P4 differs from Problem P3 in that the additional requirement of quasi-steady state is imposed at the final point.The above Mayer problems are solved via the sequential gradient-restoration algorithm in conjunction with a new singularity avoiding transformation which accounts automatically for the bounds on rudder angle and rudder angle time rate.The optimal control histories involve multiple subarcs along which either the rudder angle is kept at one of the extreme positions or the rudder angle time rate is held at one of the extreme values. In problems where quasi-steady state is imposed at the final point, there is a higher number of subarcs than in problems where quasi-steady state is not imposed; the higher number of subarcs is due to the additional requirement that the lateral velocity and rudder angle vanish at the final point.  相似文献   

17.
The Vehicle Routing Problem (VRP) requires the determination of an optimal set of routes for a set of vehicles to serve a set of customers. We deal here with the Capacitated Vehicle Routing Problem (CVRP) where there is a maximum weight or volume that each vehicle can load. We developed an Ant Colony algorithm (ACO) for the CVRP based on the metaheuristic technique introduced by Colorni, Dorigo and Maniezzo. We present preliminary results that show that ant algorithms are competitive with other metaheuristics for solving CVRP.  相似文献   

18.
We introduce and study the Travelling Salesman Problem with Multiple Time Windows and Hotel Selection (TSP-MTWHS), which generalises the well-known Travelling Salesman Problem with Time Windows and the recently introduced Travelling Salesman Problem with Hotel Selection. The TSP-MTWHS consists in determining a route for a salesman (eg, an employee of a services company) who visits various customers at different locations and different time windows. The salesman may require a several-day tour during which he may need to stay in hotels. The goal is to minimise the tour costs consisting of wage, hotel costs, travelling expenses and penalty fees for possibly omitted customers. We present a mixed integer linear programming (MILP) model for this practical problem and a heuristic combining cheapest insert, 2-OPT and randomised restarting. We show on random instances and on real world instances from industry that the MILP model can be solved to optimality in reasonable time with a standard MILP solver for several small instances. We also show that the heuristic gives the same solutions for most of the small instances, and is also fast, efficient and practical for large instances.  相似文献   

19.
Dupuis  Paul  Ramanan  Kavita 《Queueing Systems》2000,36(4):327-349
We consider a four-class two-station network with feedback, with fluid inputs and a head-of-the-line generalized processor sharing discipline at each station. We derive the Skorokhod Problem associated with the network and obtain algebraic sufficient conditions for Lipschitz continuity of the associated Skorokhod Map. This provides the first example of a multiclass network with feedback for which the associated Skorokhod Problem has been proved to be regular. As an elementary application, we show that under the conditions which guarantee Lipschitz continuity the network is stable if and only if the usual load conditions apply.  相似文献   

20.
消防员问题可视为传染病、火灾、谣言、计算机病毒等传播的一个简化模型.假设一把火在一个图的某个点或多个点燃起,消防员选择若干个未着火的顶点进行防护,然后火蔓延到前一步着火点的未燃邻点.当火不再蔓延时整个过程结束.消防员问题自1995年提出以来引起了人们的广泛关注.本文简述了与消防员问题相关的最近研究进展,包括算法复杂性、无限图和有向图的消防员问题、图的存活率、图的燃烧数及一些有待于进一步研究的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号