首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 4-hydroxy-6-methoxyaurones and 4,6-dimethoxyaurones has been synthesised and tested for their binding affinity toward the nucleotide-binding domain of P-glycoprotein, an ABC (ATP-Binding Cassette) transporter which mediates the resistance of cancer cells to chemotherapy. These compounds differ from each other by the nature of the substituent on the aurone B-ring. The binding affinity seems to be linked to the nature of the substituent, as well as to the presence or the absence of a hydroxy group at position 4. The most active compounds were 4'-bromo-4-hydroxy-6-methoxyaurone and 4-hydroxy-4'-iodo-6-methoxyaurone.  相似文献   

2.
We recently described the design and synthesis of a novel CD4 binding peptidomimetic as a potential HIV entry inhibitor with a KD value of approximately 35 microM and a high proteolytic stability [A. T. Neffe and B. Meyer, Angew. Chem., Int. Ed., 2004, 43, 2937-2940]. Based on saturation transfer difference (STD) NMR analyses and docking studies of peptidomimetics we now report the rational design, synthesis, and binding properties of 11 compounds with improved binding affinity. Surface plasmon resonance (SPR) resulted in a KD = 10 microM for the best peptidomimetic XI, whose binding affinity is confirmed by STD NMR (KD = 9 microM). The STD NMR determined binding epitope of the ligand indicates a very similar binding mode as that of the lead structure. The binding studies provide structure activity relationships and demonstrate the utility of this approach.  相似文献   

3.
4.
Biotin-(strept)avidin complex is widely used in biotechnology because of its extremely high binding constant, but there is no report describing spatiotemporally controlled formation of the complex in live cells. Here, based on X-ray crystal structure analysis and calorimetric data, we designed and synthesized photoreleasable biotins, which show greatly reduced affinity for (strept)avidin, but recover native affinity after UV irradiation. For application at the cell surface, we introduced an amine-reactive moiety into these "caged" biotin molecules. Specific fluorescence imaging of live cells that had been labeled with these agents and then UV-irradiated, was accomplished by addition of streptavidin conjugated with a fluorophore. We also demonstrated the applicability of these compounds for UV-irradiated-cell-specific drug delivery by using caged-biotin-labeled cells, a prodrug, and streptavidin conjugated with a prodrug-activating enzyme.  相似文献   

5.
Beta2-microglobulin (beta2-m) is a small amyloidogenic protein normally present on the surface of most nucleated cells and responsible for dialysis-related amyloidosis, which represents a severe complication of long-term hemodialysis. A therapeutic approach for this amyloidosis could be based on the stabilization of beta2-m through the binding to a small molecule, and consequent inhibition of protein misfolding and amyloid fibril formation. A few compounds have been described to weakly bind beta2-m, including the drug suramin. The lack of a binding site for nonpolypeptidic ligands on the beta2-m structure makes it difficult for both the identification of functional groups responsible for the binding and the search of hits to be optimized. The characterization of the binding properties of suramin for beta2-m by using three different techniques (surface plasmon resonance, affinity CE (ACE), ultrafiltration) is here described and the results obtained are compared. The common features of the chemical structures of the compounds known to bind the protein led us to select 200 sulfonated/suramin-like molecules from a wider chemical library on the basis of similarity rules, so as to possibly single out some interesting hits and to gain more information on the functional groups involved in the binding. The development of screening methods to test the compounds by using ultrafiltration and ACE is described.  相似文献   

6.
SAR by MS     
RNAs have recently emerged as an exciting new target for small molecule therapeutics. Conventional HTS discovery strategies measuring disruption of RNAprotein interactions have proven unsuccessful. We describe a ligand-based drug discovery strategy that addresses the inherent difficulties RNA targets. The strategy is based on: 1) using a MS spectrometry (MS)-based assay to measure the affinity of compounds for a target; 2) performing competitive binding experiments and molecular modeling with the motifs to determine the binding site(s) of the ligands; 3) design and synthesis of derivatives of interesting binders to establish the linking sites; 4) identifying the appropriate linker group using MS; 5) fusing motifs into a more complex structure to afford higher affinity compounds. Example of applying this strategy to identify new classes of lead molecules with affinity and specificity for ribosomal RNA targets will be presented.  相似文献   

7.
Homeostatic trafficking of immune cells by CC chemokine receptor 7 (CCR7) keeps immune responses and tolerance in a balance. The involvement of this protein in lymph node metastasis in cancer marks CCR7 as a penitential drug target. Using the crystal structure of CCR7, herein, a comprehensive virtual screening study is presented to filter novel strong CCR7 binding phytochemicals from Saudi medicinal plants that have a higher binding affinity for the intracellular allosteric binding pocket. By doing so, three small natural molecules named as Hit-1 (1,8,10-trihydroxy-3-methoxy-6-methylanthracen-9(4H)-one), Hit-2 (4-(3,4-dimethoxybenzyl)-3-(4-hydroxy-3-methoxybenzyl)dihydrofuran-2(3H)-one), and Hit-3 (10-methyl-12,13-dihydro-[1,2]dioxolo[3,4,5-de]furo[3,2-g]isochromeno[4,3-b]chromen-8-ol) are predicted showing strong binding potential for the CC chemokine receptor 7 allosteric pocket. During molecular dynamics simulations, the compounds were observed in the formation of several chemical bonding of short bond distances. Additionally, the molecules remained in strong contact with the active pocket residues and experienced small conformation changes that seemed to be mediated by the CCR7 loops to properly engage the ligands. Two types of binding energy methods (MM/GBPBSA and WaterSwap) were additionally applied to further validate docking and simulation findings. Both analyses complement the good affinity of compounds for CCR7, the electrostatic and van der Waals energies being the most dominant in intermolecular interactions. The active pocket residue’s role in compounds binding was further evaluated via alanine scanning, which highlighted their importance in natural compounds binding. Additionally, the compounds fulfilled all drug-like rules: Lipinski, Ghose, Veber, Egan, and Muegge passed many safety parameters, making them excellent anti-cancer candidates for experimental testing.  相似文献   

8.
The interaction of the organotin compounds trimethyltin(IV) and tributyltin(IV) chlorides with the calcium pump from sarcoplasmic reticulum membranes was studied. It was found that the presence of calcium fully protects against the inhibitory effect of both organotin compounds. However, the apparent affinity of the protein for tributyltin chloride is two orders of magnitude higher than for trimethyltin chloride (K0.5 values of 14 µ m and 1.4 m m , respectively). Studies of intrinsic fluorescence of the Ca2+‐ATPase and enzyme phosphorylation by ATP and Pi support the hypothesis that the inhibitory properties of trialkyltin compounds are due to the inhibition of calcium binding to the high‐affinity binding sites of the Ca2+‐ATPase. This suggests that there is a specific interaction between the trialkyltin compounds and the calcium binding sites of the protein. The effect of trialkyltin compounds on Ca2+‐ATPase was also addressed by differential scanning calorimetry to assess the thermal transition of the protein denaturation, and by infrared spectroscopy in the absorption region corresponding to the amide I band (1600–1700 cm?1) to observe changes in the secondary structure of the protein. We conclude that the interaction of trialkyltin compounds with Ca2+‐ATPase reduces the affinity and cooperativity for calcium binding and, consequently, the inhibition of ATPase activity. These events are accompanied by changes in the secondary structure of the protein, including loss of α‐helix structure and a concomitant increase in protein aggregation or unfolding. The activity of trialkyltin compounds on the Ca2+‐ATPase is discussed in relation to their solubility in water and in the lipid phase. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Plasma membrane preparations of rat corpora lutea have been incubated with [~3H]tyrosine. [~3H]-tyrosine binding sites are demonstrated and Scatchard analysis shows that there exist two types of binding sites, one with high affinity and low capacity, the other with low affinity and high capacity. The kinetics studies demonstrate that the [~3H]tyrosine binding to the two types of binding sites is reversible and the speed of binding to the high affinity type is faster than that to the low affinity type. The analysis of the chemical structure of tyrosine analogues and related compounds with respect to the specificity of the binding sites reveal that both types of binding sites show specificity, but the specificity of the high affinity sites is higher than that of the low affinity sites. The relations of tyrosine structure to binding processing and to tyrosine inhibitory action on hCG-induced progesterone production are discussed. It is suggested that the high affinity binding sites might be regarded as "ty  相似文献   

10.
A novel competition dialysis assay was used to investigate the structural selectivity of a series of substituted 2-(2-naphthyl)quinoline compounds designed to target triplex DNA. The interaction of 14 compounds with 13 different nucleic acid sequences and structures was studied. A striking selectivity for the triplex structure poly dA:[poly dT](2) was found for the majority of compounds studied. Quantitative analysis of the competition dialysis binding data using newly developed metrics revealed that these compounds are among the most selective triplex-binding agents synthesized to date. A quantitative structure-affinity relationship (QSAR) was derived using triplex binding data for all 14 compounds used in these studies. The QSAR revealed that the primary favorable determinant of triplex binding free energy is the solvent accessible surface area. Triplex binding affinity is negatively correlated with compound electron affinity and the number of hydrogen bond donors. The QSAR provides guidelines for the design of improved triplex-binding agents.  相似文献   

11.
The metabolites of (E) [corrected]-4-[1-[4-[2-dimethylamino)ethoxy]phenyl]- 2-(4-isopropylphenyl)-1-butenyl]phenyl monophosphate, TAT-59, (1), a potent antitumor agent for hormone-dependent tumors, and derivatives of TAT-59 were synthesized to confirm its proposed structure. The structure and the Z-configuration of the metabolites (2a-8a) were confirmed by comparison with synthesized authentic compounds. All of the metabolites and the derivatives of TAT-59 were tested for a binding affinity toward estrogenic receptors in vitro and antiuterotrophic activity in vivo. Most of the metabolites possessed remarkable binding affinity toward estrogenic receptors as well as fairly good antiuterotrophic activity.  相似文献   

12.
药物头孢氨苄分子模板聚合物水中结合性质的研究   总被引:15,自引:0,他引:15  
郭洪声  何锡文 《分析化学》2000,28(10):1214-1219
采用分子模板技术合成了以头孢氨苄为模板分子以三氟甲基丙烯酸和4-乙烯基吡啶同时为功能单体的分子模板聚合物。将得到的棒状聚合物研磨过筛后,运用平衡结合实验研究了头孢氨苄分子模板聚合物的结合性质,Scatchard分析表明,在所研究的浓度范围内,在聚合物中形成了两类不同的结合位点。头孢氨苄分子模板聚合物与其化学组成相同的非模板聚合物相比,有很高的结合容量。底物选择性实验表明,与其它结构相似的药物相比,  相似文献   

13.
The affinity and enantioselectivity have been determined for designed propranolol derivatives as ligands for Cel7A by capillary electrophoresis (CE) at pH 7.0. These results have been compared to measurements at pH 5.0. In agreement with previous studies, the affinity increased at the higher pH. However, the affinity was not as dependent of the ligand structure at pH 7.0 as at pH 5.0, and the selectivity was generally decreased. Instead, at pH 7.0, the changes in binding were mainly dependent on the presence of additional dihydroxyl groups, indicating an increased importance of the electrostatic interactions. To evaluate the pH dependent variations in binding, changes in both the ligand and in the enzyme had to be taken into account. To ensure that the ligands had the same charge in all measurements, pKa-values of all compounds were determined. The ligand-protein interaction has also been studied by inhibition experiments at both pHs to evaluate the specific binding to the active site when competing with the substrate p-nitrophenyl lactoside (pNPL). With support of docking computations we propose a hypothesis on the effect of the ligand structure and pH dependency of the binding and selectivity of amino alcohols to Cel7A.  相似文献   

14.
Through an estrogenic activity bioassay-guided fractionation of the 70% ethanolic extract of Cassia tora seeds two new phenolic triglucosides, torachrysone 8-O-[beta-D-glucopyranosyl(1-->3)-O-beta-D-glucopyranosyl(1-->6)-O-beta-D-glucopyranoside] (1) and toralactone 9-O-[beta-D-glucopyranosyl-(1-->3)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranoside] (2), along with seven known compounds were isolated. The structures of the new compounds were elucidated on the basis of spectroscopic and chemical evidence. The estrogenic activity of the fractions and the isolated compounds were investigated using the estrogen-dependent proliferation of MCF-7 cells. In addition, the yeast two hybrid assay expressing estrogen receptor alpha (ERalpha) and beta (ERbeta) and the ERalpha competitor screening assay (ligand binding screen) were used to verify the binding affinities of the isolated compounds to ER. Furthermore, a naringinase pre-treatment of the 70% alcoholic extract of Cassia tora seeds resulted in a significant increase in its estrogenic activity. From the naringinase pre-treated extract six compounds were isolated, among which 6-hydroxymusizin and aurantio-obtusin showed the most potent estrogenic activity, while torachrysone, rubrofusarin and toralactone showed a significant anti-estrogenic activity. Finally, the structure requirements responsible for the estrogenic activity of the isolated compounds were studied by investigating the activity of several synthetic compounds and chemically modifying the isolated compounds. The basic nucleus 1,3,8-trihyroxynaphthalene (T(3)HN) was found to play a principal role in the binding affinity of these compounds to ER.  相似文献   

15.
To evaluate the role of hydrophobic and electrostatic or other polar interactions for protein-ligand binding, we studied the interaction of human serum albumin (HSA) and beta-lactoglobulin with various aliphatic (C10-C14) cationic and zwitterionic detergents. We find that cationic detergents, at levels that do not cause unfolding, interact with a single site on beta-lactoglobulin and with two primary and five to six secondary sites on HSA with an affinity that is approximately the same as that with which zwitterionic (dimethylamineoxide) detergents interact, suggesting the absence of significant electrostatic interactions in the high-affinity binding of these compounds. The binding affinity for all of the groups of compounds was dependent upon hydrocarbon chain length, suggesting the predominant role of hydrophobic forces, supported by polar interactions at the protein surface. A distinct correlation between the binding energy and the propensity for micelle formation within the group of cationic or noncharged (nonionic and zwitterionic) detergents indicated that the critical micellar concentration (CMC) for each of these detergent groups, rather than the absolute length of the hydrocarbon chain, can be used to compare their hydrophobicities during their interaction with protein. Intrinsic fluorescence data suggest that the two primary binding sites on serum albumin for the zwitterionic and cationic compounds are located in the C-terminal part of the albumin molecule, possibly in the Sudlow II binding region. Comparisons with previous binding data on anionic amphiphiles emphasize the important contribution of ion bond formation and other polar interactions in the binding of fatty acids and dodecyl sulfate (SDS) by HSA but not by beta-lactoglobulin. Electrostatic interactions by cationic detergents played a significant role in destabilizing the protein structure at high binding levels, with beta-lactoglobulin being more susceptible to unfolding than HSA. Zwitterionic detergents, in contrast to the cationic detergents, had no tendency to unfold the proteins at high concentrations.  相似文献   

16.
A series of 3-hydroxypyrazole derivatives have been synthesized by a base-promoted reaction of nitro-substituted donor–acceptor cyclopropanes with hydrazines. The synthesized compounds have been investigated for their ability to inhibit aquaporin 9 (AQP9) in rat Leydig cells (LC-540). The protein data bank structure for AQP9 was predicted using homology modeling; and the protein–ligand interaction for the synthesized hydroxyl pyrazole derivatives were analyzed using molecular modeling and docking studies. The results of in silico analyses showed that compound 5b had a higher binding affinity with AQP9 than other compounds. Further, in vitro studies conducted in LC-540 cells confirmed that compound 5b effectively inhibits AQP9. Hence, compound 5b may be used as an inhibitor in enhancing our understanding of AQP9 function, and in the treatment of several diseases.  相似文献   

17.
A series of novel bifunctional glycolipid ligands designed to bind with high affinity and specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized and assayed in vitro on human hepatoma cells, HepG2, derived from parenchymal liver cells. The compounds bear five β-linked Gal moieties linked to the core scaffold, hexa-antennary alcohol, for interaction with the binding site of the ASGP-R. The liposome/DNA complexes containing the glycolipid ligands are efficiently recognized by ASGP-R and exhibited high affinity and transfection activity.  相似文献   

18.
The fundamental cause of human cancer is strongly influenced by down- or up-regulations of epigenetic factors. Upregulated histone deacetylases (HDAC) have been shown to be effectively neutralized by the action of HDACs inhibitors (HDACi). However, cytotoxicity has been reported in normal cells because of non-specificity of several available HDACis that are in clinical use or at different phases of clinical trials. Because of the high amino acid sequence and structural similarity among HDAC enzymes, it is believed to be a challenging task to obtain isoform-selectivity. The essential aim of the present research work was to identify isoform-selective inhibitors against class IIa HDACs via structure-based drug design. Based on the highest binding affinity and isoform-selectivity, the top-ranked inhibitors were in silico tested for their absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, which were classified as drug-like compounds. Later, molecular dynamics simulation (MD) was carried out for all compound-protein complexes to evaluate the structural stability and the biding mode of the inhibitors, which showed high stability throughout the 100 ns simulation. Free binding energy predictions by MM-PBSA method showed the high binding affinity of the identified compounds toward their respective targets. Hence, these inhibitors could be used as drug candidates or as lead compounds for more in silico or in vitro optimization to design safe isoform-selective HDACs inhibitors.  相似文献   

19.
The delta opioid receptor (DOR) is a crucial receptor system that regulates pain, mood, anxiety, and similar mental states. DOR agonists, such as SNC80, and DOR-neutral antagonists, such as naltrindole, were developed to investigate the DOR in vivo and as potential therapeutics for pain and depression. However, few inverse agonists and non-competitive/irreversible antagonists have been developed, and none are widely available. This leaves a gap in our pharmacological toolbox and limits our ability to investigate the biology of this receptor. Thus, we designed and synthesized the novel compounds SRI-9342 as an irreversible antagonist and SRI-45128 as an inverse agonist. These compounds were then evaluated in vitro for their binding affinity by radioligand binding, their functional activity by 35S-GTPγS coupling, and their cAMP accumulation in cells expressing the human DOR. Both compounds demonstrated high binding affinity and selectivity at the DOR, and both displayed their hypothesized molecular pharmacology of irreversible antagonism (SRI-9342) or inverse agonism (SRI-45128). Together, these results demonstrate that we have successfully designed new inverse agonists and irreversible antagonists of the DOR based on a novel chemical scaffold. These new compounds will provide new tools to investigate the biology of the DOR or even new potential therapeutics.  相似文献   

20.
In order to improve the biological characteristics of DA-3934 (5), a novel gastrin/cholecystokinin (CCK)-B receptor antagonist, phenoxyacetic acid derivatives replacing the N-methyl-N-phenylcarbamoylmethyl moiety of 5 with various alkyl chains have been synthesized and their biological activity evaluated. The relationship between the structure of these compounds and their human gastrin receptor binding affinity showed that there should be the optimal size among the various N-alkyl chains. Also a significant increase in the receptor binding affinity was achieved by several compounds. Among those compounds, 2-[3-[3- [N-cyclohexylmethyl-N-[2-(N-methyl- N-phenylcarbamoylmethoxy)phenyl]carbamoylmethyl]ureido]pheny l]acetic acid (22c) and (+/-)-2-[3-[3-[N-[2-(N-methyl-N- phenylcarbamoylmethoxy)phenyl]-N-(3-methylpentyl)carbamoy lmethyl]ureido] phenyl]acetic acid (22h) exhibited high affinity for human gastrin receptors and were also more potent inhibitors in a pentagastrin-induced gastric acid secretion model than the parent compound, 5. The ED50 values of these compounds when administered intraduodenally to rats were 0.12 and 0.63 mg/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号