首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Shock wave–turbulent boundary layer interaction is a critical problem in aircraft design. Therefore, a thorough understanding of the processes occurring in such flows is necessary. The most important task is to study the unsteady phenomena, in particular, the low-frequency ones, for this interaction. An experimental study of separated flow has been performed in the zone of interaction of the incident oblique shock wave with a turbulent boundary layer at Mach 2. Two-point correlation data in the separation zone and the upstream flow were obtained and showed that low-frequency oscillations of the reflected shock waves are related to pulsations in the inflow turbulent boundary layer.  相似文献   

2.
An asymptotic theory of the interaction of a turbulent boundary layer on a plate with a normal shock wave of low intensity has been constructed in various studies [1–4] under the assumption that the averaged velocity of the particles in the boundary layer in front of the interaction region satisfies a logarithmic law. In the present paper a different approach to this problem is proposed based on a power law of the velocity in the undisturbed boundary layer. The obtained results give different estimates for not only the sizes of the characteristic flow regions in the interaction region but also for the shock intensity leading to boundary layer separation.  相似文献   

3.
Tangential discontinuities [1] are introduced in solving several transient and steady-state problems of gas dynamics. These discontinuities are unstable [2] as a result of the effects of viscosity and thermal conductivity. Therefore it is advisable to replace the tangential discontinuity by a mixing region and account for its interaction with the inviscid flows, establishing on the boundaries of this region the conditions of vanishing friction stress and equality of the velocity and temperature components to the corresponding velocity and temperature components of the inviscid flows. This formulation improves the accuracy of the solution of such problems by posing them as problems with irregular reflection and intersection of shock waves [1].The consideration of the interaction of unsteady turbulent mixing regions with the inviscid flow also permits the formulation of several problems in which the effects of viscosity lead to complete rearrangement of the flow pattern (the lambda-configuration) with the interaction of the reflected shock wave with the boundary layer in the shock tube [3,4], the formation of zones of developed separation ahead of obstacles, etc.).In this connection, §1 presents an analysis of the self-similar solutions of the unsteady turbulent mixing equations (a corresponding analysis of the laminar mixing equations which coincide with the boundary layer equations is presented in [1]). It is shown that these self-similar solutions describe, along with the several problems noted above, the problems of the formation of steady jets and mixing zones in the base wake.As an example, §2 presents, within the framework of the proposed schematization, an approximate solution of the problem of the interaction of a shock wave reflected from a semi-infinite wall with the boundary layer on a horizontal plate behind the incident shock wave. The results obtained are applied to the analysis of reflection in a shock tube. Computational results are presented which are in qualitative agreement with experiment [3, 4].  相似文献   

4.
数值研究平板方舵激波-湍流边界层干扰   总被引:4,自引:1,他引:4  
邓小刚  张涵信 《力学学报》1993,25(6):651-657
数值研究了平板方舵激波-湍流边界层干扰流场。模拟出了分离激波与弓型激波砬撞后形成的“λ”激波结构;消晰地显示了分离区中的旋涡结构,发现流场中会出现二次分离涡,并从理论上分析了流场对称面涡心形态与非定常的关系,得到了涡心为不稳定螺旋点或出现极限环是非定常流动特征的新结论。  相似文献   

5.
Detailed distributions of heat flux in the region of shock wave and turbulent boundary layer interaction induced by a cylinder were measured in the shock tunnel. Oil flow patterns and Schlieren photographs were taken. Empirical relations were given for determining separation shock angle, peaks of heat flux and their locations on both cylinder leading edge and flat plate surface, and other characteristic parameters of the interaction region.  相似文献   

6.
激波/湍流边界层干扰问题广泛存在于高速飞行器内外流动中, 激波干扰会导致局部流场出现强压力脉动, 严重影响飞行器气动性能和飞行安全. 为了考察干扰区内脉动压力的统计特性, 对来流马赫数2.25, 激波角33.2°的入射激波与平板湍流边界层相互作用问题进行了直接数值模拟研究. 在对计算结果进行细致验证的基础上, 分析比较了干扰区外层和物面脉动压力的典型统计特征, 如脉动强度、功率谱密度、两点相关和时空关联特性等, 着重探讨了两者的差异及其原因. 研究发现, 激波干扰对外层和物面压力脉动的影响差异显著. 分离区内脉动以低频特征为主, 随后再附区外层压力脉动的峰值频率往高频区偏移, 而物面压力脉动的低频能量仍相对较高. 两点相关结果表明, 外层和物面脉动压力的展向关联性均明显强于其流向, 前者积分尺度过激波急剧增长随后缓慢衰减, 而后者积分尺度整体上呈现逐步增大趋势. 此外, 时空关联分析结果指出, 脉动压力关联系数等值线仍符合经典的椭圆形分布, 干扰区下游压力脉动对流速度将减小, 外层对流速度仍明显高于物面.   相似文献   

7.
S. Mowatt  B. Skews 《Shock Waves》2011,21(5):467-482
An investigation into a three-dimensional, curved shock wave interacting with a three-dimensional, curved boundary layer on a slender body is presented. Three different nose profiles mounted on a cylindrical body were tested in a supersonic wind tunnel and numerically simulated by solving the Navier–Stokes equations. The conical and hemispherical nose profiles tested were found to generate shock waves of sufficient strength to separate the boundary layer on the cylinder, while the shock wave generated by the ogival profile did not separate the boundary layer. For the separated flow, separation was found to occur predominantly on the windward side of the cylinder with the lee-side remaining shielded from the direct impact of the incident shock wave. A thickening of the boundary layer on the lee-side of all the profiles was observed, and in the conical and hemispherical cases this leads to the re-formation of the incident shock wave some distance away from the surface of the cylinder. A complex reflection pattern off the shock wave/boundary layer interaction (SWBLI) was also identified for the separated flow cases. For comparative purposes, an inviscid simulation was performed using the hemispherical profile. Significant differences between the viscous and inviscid results were noted including the absence of a boundary layer leading to a simplified shock wave reflection pattern forming. The behaviour of the incident shock wave on the lee-side of the cylinder was also affected with the shock wave amalgamating on the surface of the cylinder instead of away from the surface as per the viscous case. Test data from the wind tunnel identified two separation lines present on the cylindrical surface of the hemispherical SWBLI generator. The pair of lines were not explicitly evident in the original CFD simulations run, but were later identified in a high-resolution simulation.  相似文献   

8.
To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region \(0.01< y/\delta < 0.4\), where y is the distance from the wall and \(\delta \) is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.  相似文献   

9.
高超声速激波湍流边界层干扰直接数值模拟研究   总被引:11,自引:7,他引:4  
童福林  李欣  于长  李新 《力学学报》2018,50(2):197-208
高超声速激波与湍流边界层干扰会导致飞行器表面出现局部热流峰值,严重影响飞行器气动性能和飞行安全. 针对高马赫数激波干扰问题,以往数值研究多采用雷诺平均方法,而在直接数值模拟方面的相关工作较为少见. 开展高超声速激波与湍流边界层干扰的直接数值模拟研究,有助于进一步提升对其复杂流动机理认识和理解,同时也将为现有湍流模型和亚格子应力模型的改进提供理论依据. 采用直接数值模拟方法对来流马赫数6.0,34°压缩拐角内激波与湍流边界层的干扰问题进行了研究. 基于雷诺应力各向异性张量,分析了高超声速湍流边界层在压缩拐角内的演化特性. 通过对湍动能输运方程的逐项分析,系统地研究了可压缩效应对湍动能及其输运的影响机制. 采用动态模态分解方法,探讨了干扰流场的非定常运动历程. 研究结果表明,随着湍流边界层往下游发展,近壁湍流的雷诺应力状态由两组元轴对称状态逐渐演化为两组元状态,外层区域则由轴对称膨胀趋近于各向同性. 干扰流场内存在强内在压缩性效应(声效应),其对湍动能输运的影响主要体现在压力--膨胀项,而对膨胀--耗散项影响较小. 高超声速下压缩拐角内的非定常运动仍存在以分离泡膨胀/收缩为特征的低频振荡特性,其物理机制与分离泡剪切层密切相关.   相似文献   

10.
The principal objective of this paper is to study some unsteady characteristics of an interaction between an incident oblique shock wave impinging a laminar boundary layer developing on a plate plane. More precisely, this paper shows that some unsteadiness, in particular the low frequency unsteadiness, originate in a supercritical Hopf bifurcation related to the dynamics of the separated boundary layer and not necessarily to the coherent structures resulting from the turbulent character of the boundary layer crossing the shock wave. Numerical computations of a shock-wave/laminar boundary-layer interaction (SWBLI) have been compared with a classical test case (Degrez test case) and both two-dimensional and three-dimensional (3D) unsteady Navier–Stokes equations are numerically solved with an implicit dual time stepping for the temporal algorithm and high order AUSM+ scheme for the spatial discretization. A parametric study on the oblique shock-wave angle has been performed to characterize the unsteady behaviour onset. Finally, discussions and assumptions are made about the origin of the 3D low frequency unsteadiness.  相似文献   

11.
All previous studies on shock wave diffraction in shock tubes have spatial and temporal limitations due to the size of the test sections. These limitations result from either the reflection of the expansion wave, generated at the corner, from the top wall and/or of the reflection of the incident diffracted shock from the bottom wall of the test section passing back through the region of interest. This has limited the study of the evolution of the shear layer and its associated vortex, which forms a relatively small region of the flow behind the shock with an extent of only a few centimeters, and yet is a region of significant interest. A special shock tube is used in the current tests which allow evolution of the flow to be examined at a scale about an order of magnitude larger than in previously published results, with shear layer lengths of up to 250 mm being achieved without interference from adjacent walls. Tests are presented for incident shock wave Mach numbers of nominally 1.3–1.5. Studies have been undertaken with wall angles of 10, 20, 30 and 90°. Significant changes are noted as the spatial and temporal scale of the experiment increases. For a given wall angle, the flow behind the incident shock is not self-similar as is usually assumed. Both shear layer instability and the development of turbulent patches become evident, neither of which have been noted in previous tests.  相似文献   

12.
PIV study on a shock-induced separation in a transonic flow   总被引:1,自引:0,他引:1  
A transonic interaction between a steady shock wave and a turbulent boundary layer in a Mach 1.4 channel flow is experimentally investigated by means of particle image velocimetry (PIV). In the test section, the lower wall is equipped with a contour profile shaped as a bump allowing flow separation. The transonic interaction, characterized by the existence in the outer flow of a lambda shock pattern, causes the separation of the boundary layer, and a low-speed recirculating bubble is observed downstream of the shock foot. Two-component PIV velocity measurements have been performed using an iterative gradient-based cross-correlation algorithm, providing high-speed and flexible calculations, instead of the classic multi-pass processing with FFT-based cross-correlation. The experiments are performed discussing all the hypotheses linked to the experimental set-up and the technique of investigation such as the two-dimensionality assumption of the flow, the particle response assessment, the seeding system, and the PIV correlation uncertainty. Mean velocity fields are presented for the whole interaction with particular attention for the recirculating bubble downstream of the detachment, especially in the mixing layer zone where the effects of the shear stress are most relevant. Turbulence is discussed in details, the results are compared to previous study, and new results are given for the turbulent production term and the return to isotropy mechanism. Finally, using different camera lens, a zoom in the vicinity of the wall presents mean and turbulent velocity fields for the incoming boundary layer.  相似文献   

13.
The distinctive features of the flow in the region of interaction between an oscillating shock and a flat-plate boundary layer are studied for the laminar, transitional, and turbulent flow regimes. The flow patterns and the pressure and heat transfer distributions in the interaction region are analyzed at different intensities, frequencies, and amplitudes of the oscillating shock. The results of the interaction of oscillating and steady shocks with the flat-plate boundary layer are compared.  相似文献   

14.
An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.  相似文献   

15.
本文探讨了一种新的激波-非定常边界层相互干扰现象,这种激波-边界层干扰现象既不同于定常激波-边界层干扰现象,又不同于激波在端面反射后与该激波所诱导的边界层之间的干扰现象,而是运动激波与稀疏波和第一激波所诱导的非这常边界层之间的干扰现象,本文对这种现象用微波动力学理论进行分析,并把这种干扰现象看成激波的绕射现象,同时在稀疏波破膜的双驱动激波管中进行实验观察,最后把理论分析与实验观察进行了比较。  相似文献   

16.
The applicability of the criteria of existence of inviscid vortex structures (vortex Ferri singularities) is studied in the case in which a contact discontinuity of the corresponding intensity proceeds from the branching point of the λ shock wave configuration accompanying turbulent boundary layer separation under the action of an inner shock incident on the leeward wing panel. The calculated and experimental data are analyzed, in particular, those obtained using the special shadow technique developed for visualizing supersonic conical streams in nonsymmetric, Mach number 3 flow around a wing with zero sweep of the leading edges and the vee angle of 2π /3. The applicability of the criteria of existence of inviscid vortex structures is established for contact discontinuities generated by the λ shock wave configuration accompanying turbulent boundary layer separation realized under the action of a shock wave incident on the leeward wing panel. Thus, it is established that the formation of the vortex Ferri singularities in a shock layer is independent of the reason for the existence of the contact discontinuity and depends only on its intensity.  相似文献   

17.
Wall pressure fluctuations and surface heat transfer signals have been measured in the hypersonic turbulent boundary layer over a number of compression-corner models. The distributions of the separation shock oscillation frequencies and periods have been calculated using a conditional sampling algorithm. In all cases the oscillation frequency distributions are of broad band, but the most probable frequencies are low. The VITA method is used for deducing large scale disturbances at the wall in the incoming boundary layer and the separated flow region. The results at present showed the existence of coherent structures in the two regions. The zero-cross frequencies of the large scale structures in the two regions are of the same order as that of the separation shock oscillation. The average amplitude of the large scale structures in the separated region is much higher than that in the incoming boundary layer. The length scale of the separation shock motion region is found to increase with the disturbance strength. The results show that the shock oscillation is of inherent nature in the shock wave/turbulent boundary layer interaction with separation. The shock oscillation is considered to be the consequence of the coherent structures in the separated region.This work was supported by the Chinese National Science Foundation. Thanks for Prof. Z. B. Lin and Miss X. Y. Feng for their helps. The authors wish to express thanks to Professor W. Merzkirch who has helped us to check the paper again and again.  相似文献   

18.
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and flow separations on wing upper surface induce flow instabilities, ‘buffet’, and then the buffeting (structure vibrations). This phenomenon can greatly influence the aerodynamic performance. These flow excitations are self‐sustained and lead to a surface effort due to pressure fluctuations. They can produce enough energy to excite the structure. The objective of the present work is to predict this unsteady phenomenon correctly by using unsteady Navier–Stokes‐averaged equations with a time‐dependent turbulence model based on the suitable (kε) turbulent eddy viscosity model. The model used is based on the turbulent viscosity concept where the turbulent viscosity coefficient () is related to local deformation and rotation rates. To validate this model, flow over a flat plate at Mach number of 0.6 is first computed, then the flow around a NACA0012 airfoil. The comparison with the analytical and experimental results shows a good agreement. The ONERA OAT15A transonic airfoil was chosen to describe buffeting phenomena. Numerical simulations are done by using a Navier–Stokes SUPG (streamline upwind Petrov–Galerkin) finite‐element solver. Computational results show the ability of the present model to predict physical phenomena of the flow oscillations. The unsteady shock wave/boundary layer interaction is described. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
王国蕾  陆夕云 《力学进展》2012,42(3):274-281
本文综述了关于激波和湍流相互作用数值模拟的近期研究进展, 主要包括激波和均匀各向同性湍流、激波和湍流边界层、激波和射流以及激波和尾迹的相互作用. 激波和湍流相互作用特性受到诸多因素的影响,如激波的强度、位置、形状和流动边界以及来流的湍流状态和可压缩性等. 激波和湍流的相互作用会引起流场结构、激波特性和湍流统计特性的显著变化. 最后简要讨论了激波和湍流相互作用数值研究需要关注的一些问题.   相似文献   

20.
The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions has been driving research in this area for several decades. We present here a large-eddy simulation investigation of the interaction between an impinging oblique shock and a Mach 2.3 turbulent boundary layer. Contrary to past large-eddy simulation investigations on shock/turbulent boundary layer interactions, we have used an inflow technique which does not introduce any energetically significant low frequencies into the domain, hence avoiding possible interference with the shock/boundary layer interaction system. The large-eddy simulation has been run for much longer times than previous computational studies making a Fourier analysis of the low frequency possible. The broadband and energetic low-frequency component found in the interaction is in excellent agreement with the experimental findings. Furthermore, a linear stability analysis of the mean flow was performed and a stationary unstable global mode was found. The long-run large-eddy simulation data were analyzed and a phase change in the wall pressure fluctuations was related to the global-mode structure, leading to a possible driving mechanism for the observed low-frequency motions.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号