首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-speed turbulent flows often encounter high heat loads due to the presence of shock waves. The turbulent energy flux correlation in the mean energy conservation equation is a key unclosed term that determines the heat transfer rate. In this work, we employ existing turbulence models to predict the turbulent energy flux in canonical shock-turbulence interaction. The shortcomings of these models are highlighted, and a new heat-flux limiter model is proposed with the aid of linear theory results. We also write the transport equation for the turbulent energy flux across a shock wave and use it to develop a physics-based model for the same. It is found to predict the peak energy flux at the shock wave and its variation in the acoustic-adjustment region behind the shock. Numerical error incurred while solving the model equations at a shock wave are analyzed and a numerically robust model is obtained by eliminating the nonconservative source terms. The model predictions are compared with available direct numerical simulation data and a good match is obtained for a range of Mach numbers.  相似文献   

2.
采用分区方法及Roe三阶流通量差分分裂格式求解雷诺平均N-S方程,湍流附加黏性系数用Baldwin-Lomax模型计算,数值模拟了高超声速条件下变高度圆柱诱导的激波边界层层干扰,其流场的主要特性均与实验结果一致或规律相同,结果清晰地展示了流场结构以及气动载荷分布随柱高度的变化特征,产说明激波碰撞和旋涡运动都可能导致飞行器表面局部气动载荷的增加。  相似文献   

3.
Supersonic flow around a cylinder is investigated using the direct simulation Monte Carlo method over a wide rarefaction range: from the Knudsen number Kn = 0.1 to free-molecular flow. The effect of the cylinder temperature on the region of sharp nonequilibrium near the cylinder and the heat flux is studied.  相似文献   

4.
In this study, the effect of heat transfer on the compressible turbulent shear layer and shockwave interaction in a scramjet has been investigated. To this end, highly resolved Large Eddy Simulations (LES) are performed to explore the effect of wall thermal conditions on the behavior of a reattaching free shear layer interacting with an oblique shock in compressible turbulent flows. Various wall-to-recovery temperature ratios are considered, and results are compared to the adiabatic wall. It is found that the wall temperature affects the reattachment location and the shock behavior in the interaction region. Furthermore, fluctuating heat flux exhibits a strong intermittent behavior with severe heat transfer compared to the mean, characterized by scattered spots. The distribution of the Stanton number shows a strong heat transfer and complex pattern within the interaction, with the maximum thermal (heat transfer rates) and dynamic loads (root-mean-square wall pressure) found for the case of the cold wall. The analysis of LES data reveals that the thermal boundary condition can significantly impact the wall pressure fluctuations level. The primary mechanism for changes in the flow unsteadiness due to the wall thermal condition is linked to the reattaching shear layer, which agrees with the compressible turbulent boundary layer theory.  相似文献   

5.
The temperature distribution within the thermal boundary layer region due to the flow of an incompressible second-order fluid around a heated circular cylinder, maintained at a constant temperature higher than that of the fluid at infinity, has been obtained near the forward stagnation point by series expansion. The graph of the Nusselt number Nu for the Prandtl number P = 25 and the Eckert number E = 0.1 indicates that the non-Newtonian effect is to increase the heat flux from the cylinder to the liquid in the region 0° ? θ ? 15.7° and to decrease it in the region 15.7° < θ ? 00 where θ is the angular distance on the cylinder measured from the forward stagnation point. The critical point θ0 at which Nu = 0, that is, where the effect of the frictional heating balances the effect of the temperature difference and there is no heat flux either from the cylinder or from the liquid, shifts towards the forward stagnation point with the increase of non-Newtonian effects.  相似文献   

6.
The motion of an inertial dispersed admixture near a plane cylinder immersed in a steady-state hypersonic dusty flow in the presence of an oblique shock wave interacting with the bow shock is considered. It is assumed that the free-stream particle mass concentration is small and the particles do not affect the carrier flow. The III and IV shock wave interaction regimes are considered. The gas flow parameters in the shock layer are calculated from the numerical solution of the full Navier-Stokes equations for the perfect gas. A TVD second-order finite-difference scheme constructed on the basis of a finite volume method is used. For calculating the dispersed-phase parameters, including the concentration, the full Lagrangian method is used. On a wide range of variation of the particle inertia parameters, the patterns of the particle trajectories, velocity, concentration, and temperature in the shock layer are studied. The possibility of aerodynamic focusing of the particles behind the shock wave intersection point and the formation of narrow beams with a high particle concentration is revealed. These beams impinge on the cylinder surface and result in a sharp increase in the local heat fluxes. The maximal possible increase in the heat fluxes caused by the particles colliding with the cylinder surface is estimated for the flows with and without the incident oblique shock wave.  相似文献   

7.
Several sets of experimental studies of the structure of transverse hypersonic flow past blunt bodies (cylinder and truncated wedge) and heat transfer on them are performed in the UT-1M shock tube of the Central Aerohydrodynamics Institute. The purpose of the investigation was to obtain three-dimensional modes of hypersonic flow past the nose surfaces of blunt bodies in an artificially disturbed and nominally uniform flows. The controlled disturbances in the freestream were produced by thin threads pulled over the nozzle exit. In the experiment the flow was visualized using the Töpler method and the heat flux distribution over the cylinder was measured using luminescent temperature transformers. The experiments show that both the flow and the heat transfer in the vicinity of the cylinder nose are very sensitive to vortex disturbances in the oncoming hypersonic flow. In a nominally uniform flow (M = 8 and Re = 3160–11670) a steady three-dimensional mode of flow past the nose surface of a blunt wedge could be obtained in the form of a single vortex pair.  相似文献   

8.
Accurate computations of two‐dimensional turbulent hypersonic shock–shock interactions that arise when single and dual shocks impinge on the bow shock in front of a cylinder are presented. The simulation methods used are a class of lower–upper symmetric‐Gauss–Seidel implicit anti‐diffusive weighted essentially non‐oscillatory (WENO) schemes for solving the compressible Navier–Stokes equations with Spalart–Allmaras one‐equation turbulence model. A numerical flux of WENO scheme with anti‐diffusive flux correction is adopted, which consists of first‐order and high‐order fluxes and allows for a more flexible choice of first‐order dissipative methods. Experimental flow fields of type IV shock–shock interactions with single and dual incident shocks by Wieting are computed. By using the WENO scheme with anti‐diffusive flux corrections, the present solution indicates that good accuracy is maintained and contact discontinuities are sharpened markedly as compared with the original WENO schemes on the same meshes. Computed surface pressure distribution and heat transfer rate are also compared with experimental data and other computational results and good agreement is found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is the part 2 of our previous thin film heat transfer measurements. In the first report we measured time variations of heat flux over a cylinder placed in a shock tube flow and compared experimental results with CFD results, Saito et al. (Shock Waves 14:327–333, 2004). We report a result of heat transfer measurements over an 86° apex angle cone surface impinged by a Ms = 2.38 shock wave in air with distributed thin film transfer gauges along cone surface and its comparison with results of numerical simulations. We performed double exposure holographic interferometric observation, and also from the heat transfer measurement and numerical simulation, confirmed the presence of delayed transition from regular to Mach reflection over the cone. The numerical estimation of delayed transition distance from the apex agreed very well with experimental one.   相似文献   

10.
The distinctive features of the flow in the region of interaction between an oscillating shock and a flat-plate boundary layer are studied for the laminar, transitional, and turbulent flow regimes. The flow patterns and the pressure and heat transfer distributions in the interaction region are analyzed at different intensities, frequencies, and amplitudes of the oscillating shock. The results of the interaction of oscillating and steady shocks with the flat-plate boundary layer are compared.  相似文献   

11.
A new mechanism of the formation of spatially periodic structures on the nose surfaces of cylindrically blunted bodies in a hypersonic transverse flow is investigated. According to this mechanism, a curved shock wave produces a vortex flow, while the vortex, which is conserved in the presence of weak dissipation, acts on the shock and maintains its curved shape. The realizability of this vortex formation mechanism is verified by direct numerical simulation using the FLUENT software package. It is confirmed that in the case of uniform hypersonic freestream both plane and three-dimensional modes of the steady flow past the cylinder nose can exist. The three-dimensional mode is characterized by periodic-in-span vortex structures and considerable heat flux peaks on the nose surface. The calculated results are compared with the experimental data.  相似文献   

12.
The time-dependent interaction of an incident shock wave with a sphere is considered in the presence of a heat supply region ahead of the body. The reflected shock configuration and the flow pattern are numerically investigated. The efficiencies of heat shields of different shapes are compared with respect to the longitudinal force acting on the sphere.  相似文献   

13.
Closed form expressions are developed for the thermoelastic curvature of the initially plane end faces of a traction free cylinder subjected to arbitrary axisymmetric heat flux, the curved surfaces being assumed insulated. The solution is developed from a potential function representation of displacement and temperature for an elastic layer. The reciprocal theorem is invoked to show that the tractions at the curved surface of the cylinder vary linearly along the axis and they are removed by superposition of biaxial bending. It is found that the curvature of the plane ends depends on the local heat flux and the mean heat flux, whilst the cylindrical face distorts into a cone.  相似文献   

14.
We extend a hybrid DSMC/Navier–Stokes (NS) approach to unify the DSMC and the NS simulators in one framework capable of solving the mixed non‐equilibrium and near‐equilibrium flow regions efficiently. Furthermore, we use a one‐way state‐based coupling (Dirichlet–Dirichlet boundary‐condition coupling) to transfer the required information from the continuum region to the rarefied one. The current hybrid DSMC–NS frame is applied to the hypersonic flows over nanoflat plate and microcylinder cases. The achieved solutions are compared with the pure DSMC and NS solutions. The results show that the current hybrid approach predicts the surface heat transfer rate and shear stress magnitudes very accurately. Some important conclusions can be drawn from this study. For example, although the shock wave region would be a non‐equilibrium region, it is not necessary to use a pure DSMC simulator to solve it entirely. This is important when the researchers wish to predict the surface properties such as velocity slip, temperature jump, wall heat flux rate, and friction drag magnitudes accurately. Our investigation showed that our hybrid solution time would be at least 40% (for the flat plate) and 35% (for the cylinder) of the time that must be spent by a pure DSMC solver to attain the same accuracy.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
An experimental study was conducted on the heat transfer under the condition of constant heat flux and the flow around a circular cylinder with tripping-wires, which were affixed at ± 65° from the forward stagnation point on the cylinder surface. The testing fluid was air and the Reynolds number Red, based on the cylinder diameter, ranged from 1.2 × 104 to 5.2×104. Especially investigated are the interactions between the heat transfer and the flow in the critical flow state, in relation to the static pressure distribution along the cylinder surface and the mean and turbulent fluctuating velocities in the wake. It is found that the heat transfer from the cylinder to the cross flow is in very close connection with the width of near wake.  相似文献   

16.
A study was made to see if it is possible to enhance the heat transfer in the downstream region of a backward-facing step, where heat transfer is normally deteriorated, by the insertion of a cylinder near the top corner of the step. Cylinder size and streamwise position of the cylinder were kept constant but the cross-stream position of the cylinder was changed in three steps. Results of the heat transfer experiment, flow visualization, and measurement of the averaged and fluctuating flow fields were reported. When the cylinder was mounted at a position, a little higher than the top surface of the step, a jet-like flow pattern emerged in the averaged velocity profile beneath the cylinder and the recirculating flow was intensified. Therefore, the velocity of recirculating flow near the wall is increased at some streamwise positions. Additionally, the velocity fluctuation was intensified not only in the shear layer between the jet-like flow and the recirculating flow regions but also in the near wall region, resulting in the effective augmentation of heat transfer in this case. Therefore, it is concluded that the mounting of a cylinder is effective in the enhancement of deteriorated heat transfer in the recirculating flow region, if its is mounted in a proper position.  相似文献   

17.
Hypersonic MHD air flow past a blunt body in the presence of an external magnetic field is considered. The MHD effect on the flow consists in a significant increase in the shock wave stand-off from the body surface and a significant reduction in the heat flux to the wall (up to 50%). It is shown that even in the presence of a strong Hall effect the intensity of the magnetohydrodynamic interaction in the plasma behind the shock wave remains at a high level commensurable with the ideal case of the absence of a Hall effect.  相似文献   

18.
The stability of Couette flow of a viscous incompressible fluid between two concentric rotating cylinders in the presence of a radial temperature gradient due to a constant heat flux at the outer cylinder is studied. The critical values of `a' (the wave number) and Ta (the Taylor number) are listed in a table and some critical Taylor numbers are shown graphically. It is shown that as the heat flux is increased the flow becomes more unstable for all values of μ calculated, where μ is the ratio of the angular velocity of the outer cylinder to that of the inner cylinder. Received on 04 March 1997  相似文献   

19.
The problem of determining the mechanical and thermal action on a cylinder in a supersonic flow with account for the interference between an incident shock and the detached bow shock has been studied extensively, both experimentally and theoretically, in the last few decades [1–12]. A fairly complete survey can be found in monograph [12]. The interest in the problem is mainly due to the fact that in this case the so-called fourth type of shock interaction can occur, leading to a sharp local increase in the mechanical and thermal loads. As for the problem of the interference flow past a cylinder itself, it can serve as a model problem for testing techniques of calculating the separation flow past the controls of hypersonic flight vehicles.In this paper, we attempt to demonstrate the possibility of using a fairly simple approach to the calculation of the above-mentioned flows, including those with a separation zone. The approach is based on a combination of numerical simulation within the framework of the inviscid gas model and subsequent calculation of the heat transfer parameters and does not require an excessive amount of computing power.  相似文献   

20.
Analytical solution of the non-Fourier Axisymmetric temperature field within a finite hollow cylinder is investigated considering the Cattaneo-Vernotte constitutive heat flux relation. The solution is found for the most general linear time-independent boundary conditions. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. The standard method of separation of variables is used. The present solution can be reduced to special problems of interest by choosing appropriate boundary condition parameters. The solution is applied for two special cases including constant heat flux and the Gaussian distribution heating of a cylinder, and their respective non-Fourier thermal behavior is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号