首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
In the present paper, the electrochemical reduction of nitrite at a hemoglobin modified pencil lead electrode (Hb/PLE) is described. The electrochemical properties of nitrite were studied by cyclic voltammetry and chronoamperometry. Results showed that the hemoglobin film has an excellent electrochemical activity towards the reduction of nitrite. By using voltammetric and chronoamperometric methods, α, nα and n were calculated. Then the ability of the electrode for nitrite determination was investigated using differential pulse voltammetry. The electrocatalytic reduction peak currents were found to be linear with the nitrite concentration in the range from 10 to 220 µM with a detection limit of 5 µM. The relative standard deviation is 2 % for 3 successive determinations of a 100 µM nitrite solution. This modified electrode was successfully used for the detection of low amounts of NO2? in spinach sample and a spiked sample of tap water.  相似文献   

2.
In this study, a carbon paste electrode modified with (E)‐2‐((2‐chlorophenylimino)methyl)benzene‐1,4‐diol (CD) and titanium dioxide nanoparticles (TiO2) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of isoproterenol (IP) in the presence of acetaminophen (AC) and folic acid (FA). Initially, cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. In the following, the mediated oxidation of IP at the modified electrode was described. The results showed an efficient catalytic activity of the electrode for the electrooxidation of IP, which leads to a reduction in its overpotential by more than 235 mV. The value of the electron transfer coefficient (α), catalytic rate constant (kh) and diffusion coefficient (D) were calculated for IP, using electrochemical approaches. Based on differential pulse voltammetry (DPV), the oxidation of IP exhibited a dynamic range between 0.5 and 1000 µM and a detection limit (3σ) of 0.47 µM. DPV was used for simultaneous determination of IP, AC and FA at the modified electrode. Finally, this method was used for the determination of IP in real samples, using standard addition method.  相似文献   

3.
In this work, a boron‐doped diamond (BDD) electrode was used for the electroanalytical determination of indole‐3‐acetic acid (IAA) phytohormone by square‐wave voltammetry. IAA yielded a well‐defined voltammetric response at +0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer, pH 2.0. The process could be used to determine IAA in the concentration range of 5.0 to 50.0 µM (n=8, r=0.997), with a detection limit of 1.22 µM. The relative standard deviation of ten measurements was 2.09 % for 20.0 µM IAA. As an example, the practical applicability of BDD electrode was tested with the measurement of IAA in some plant seeds.  相似文献   

4.
A newly nonenzymatic sensor for hydrogen peroxide (H2O2) based on the (Au‐HS/SO3H‐PMO (Et)) nanocomposite is demonstrated. The electrochemical properties of the as‐prepared nanocomposite were studied. It displayed an excellent performance towards H2O2 sensing in the linear response range from 0.20 µM to 4.30 mM (R=0.9999) with a sensitivity of 6.35×102 µA µM?1 cm?2 and a low detection limit of 0.0499 µM. Furthermore, it was not affected by electroactive interference species. These features proved that the modified electrode was suitable for determination of H2O2.  相似文献   

5.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

6.
The present study describes the fabrication of a sensitive amperometric sensor for the determination of persulfate. The immobilization surface was prepared by modifying a glassy carbon (GC) electrode with a nanocomposite containing ruthenium oxide (RuOx) nanoparticles and thionine (TH) or celestin blue (CB). The modified electrodes indicated excellent electrocatalytic activity toward persulfate reduction at a potential of +0.1 V. The proposed sensor showed detection limits of 1.46 µM for the GC/RuOx/TH modified electrode and 2.64 µM for the GC/RuOx/CB modified electrode. The sensitivities were obtained as 3 nA µM?1 at a concentration range of 10 µM to 11 mM for the GC/RuOx/TH modified electrode and 1 nA µM?1 at a concentration range of 10 µM to 6 mM for the GC/RuOx/CB modified electrodes.  相似文献   

7.
Au/TiO2 nanorod composites with different ratios of [TiO2]:[Au] have been prepared by chemically reducing AuCl4 on the positively charged TiO2 nanorods surface and used to modify boron‐doped diamond (BDD) electrodes. The electrochemical behaviors of catechol on the bare and different Au/TiO2 nanorod composites‐modified BDD electrodes are studied. The cyclic voltammetric results indicate that these different Au/TiO2 nanorod composites‐modified BDD electrodes can enhance the electrocatalytic activity toward catechol detection, as compared with the bare BDD electrode. Among these different conditions, the Au/TiO2‐BDD3 electrode (the ratio of [TiO2]:[Au] is 27:1) is the most choice for catechol detection. The electrochemical response dependences of the Au/TiO2‐BDD3 electrode on pH of solution and the applied potential are studied. The detection limit of catechol is found to be about 1.4 × 10‐6 M in a linear range from 5 × 10‐6 M to 200 × 10‐6 M on the Au/TiO2‐BDD3 electrode.  相似文献   

8.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

9.
The toxicities of cyanide and tetramethylene disulfotetramine (tetramine) were evaluated by two methods of luminescent bacteria and PbO2 electrochemical sensor. Vibrio-qinghaiensis, a kind of luminescent bacteria, can produce bioluminescence and the bioluminescence was decreased with the addition of toxicants. The toxicities of cyanide and tetrarnine were expressed as 10 min-EC50 value, which was the concentration of chemical that reduces the light output by 50% after contact for 10 min. Nano PbO2 modified electrode, a rapid toxicity determination method was also described in this work. By the PbO2 modified electrode, the current responses of Escherichia coli (E. coli) were changed with the addition of toxicants. The value of 10 min-EC50 was also provided with the PbO2 electrochemical sensor. Compared with the 10 min-EC50 and detection limits (38.38 and 0.60 μg/mL for cyanide, 0.24 and 0.02 μg/mL for tetramine) with luminescent bacteria, the PbO2 sensor provided a simple and convenient method with lower 10 min-EC50 and detection limits (26.37 and 0.52 μg/mL for cyanide, 0.21 and 0.01 μg/mL for tetramine) and fast response time.  相似文献   

10.
In this work, the electrochemical determination of glutathione (GSH) using β‐cyclodextrin (β‐CD) modified carbon electrodes was carried out. Different methodologies were used to modify the electrodes. In the first part of this paper, we analyze and compare the ability of the electrodes to determine GSH using the different β‐CD‐modified electrodes and cyclic voltammetry. We found that the carbon paste electrode modified by potential sweeping was the best electrode for GSH determination; in addition, we found that an inclusion complex formed between β‐CD deposited on the electrode surface and GSH. The formation constant for this complex was 2498.54 M?1 at 25 °C. Furthermore, we have also calculated thermodynamic parameters for the formation of the inclusion complex. In the second part of this paper, we analyze the effect of sweep rate and pH on the determination of GSH. The best results were obtained at a rate of 50 mV s?1 and a pH of 2.2. The β‐CD‐modified carbon paste electrode exhibits a linear response in a concentration range of 20 to 157 µM with a sensitivity of 1083.65 µA mM?1cm?2 and a detection limit of 3.92 µM. Finally, the electrode was used to determine the GSH concentration in Eichhornia crassipes root extract, and the concentration determination accuracy was validated by a well‐known spectroscopic method.  相似文献   

11.
A mono‐lancunary keggin‐type decatungstosilicate (SiW11) polyoxometalate (POM) modified by γ‐aminopropyltriethoxysilane (KH550) was incorporated into polyimide (PI) through copolymerization. Nuclear magnetic resonance (NMR), fourier transition infrared spectroscopy (FTIR), and wide angle X‐ray diffraction (WAXD) were used to characterize the structure and composition of the polyoxometalate–organosilane hybrid (SiW11KH550) and PI/SiW11KH550 copolymers. The differential scanning calorimetry (DSC) studies indicate that the glass transition temperature (Tg) of PI/SiW11KH550 copolymers increases from 330°C (for neat PI) to 409°C (for the copolymer sample with 10 wt% of SiW11KH550). Dielectric measurement showed that both the dielectric constant and the dielectric loss for the copolymer thin films decreased with the increase in SiW11KH550 content, and the dielectric constant and dielectric loss values decreased to 2.1 and 3.54 × 10?3, respectively, for the copolymer sample with 10 wt% of SiW11KH550. The incorporation of SiW11KH550 into polymer matrices is a promising approach to prepare PI films with a low dielectric constant and low dielectric loss. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Yavuz Yardım 《Electroanalysis》2011,23(10):2491-2497
In the present paper, a sensitive electroanalytical methodology for the determination of capsaicin using adsorptive stripping voltammetry (AdSV) at a boron‐doped diamond (BDD) electrode is presented. The voltammetric results indicate that in the presence of sodium dodecylsulfate (SDS) the BDD electrode remarkably enhances the oxidation of capsaicin which leads to an improvement of the peak current with a shift of the peak potential to less negative values. A linear working range of 0.05 to 6.0 µg mL?1 (0.16–20 µM) with a detection limit of 0.012 µg mL?1 (0.034 µM) has been obtained using BDD electrode by AdSV.  相似文献   

13.
A promising electrochemical nitrite sensor was fabricated by immobilizing Au@Fe3O4 nanoparticles on the surface of L ‐cysteine modified glassy carbon electrode, which was characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The proposed sensor exhibited excellent electrocatalytic activity toward nitrite oxidation. The kinetic parameters of the electrode reaction process were calculated, (1–α)nα was 0.38 and the heterogeneous electron transfer coefficient (k) was 0.13 cm s?1. The detection conditions such as supporting electrolyte and pH value were optimized. Under the optimized conditions, the linear range for the determination of nitrite was 3.6×10?6 to 1.0×10?2 M with a detection limit of 8.2×10?7 M (S/N=3). Moreover, the as‐prepared electrode displayed good stability, repeatability and selectivity for promising practical applications.  相似文献   

14.
《Analytical letters》2012,45(6):912-922
An amine-Fe3O4 modified glassy carbon (GC) electrode was constructed for detecting Pb(II) ions in wastewater. The electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Square wave anodic stripping voltammetry (SWASV) was used to detect the Pb(II), and the detection limit of Pb(II) was 0.15 µM. The sensitivity of the electrode to detect Pb(II) was about 10.07 µA/µM, with a correlation coefficient of 0.991, which was approximately 10 times bigger than that of a pure Fe3O4 modified electrode. The electrode also showed good selectivity and stability. This results indicated that the amine-magnetite material could have some potential applications in heavy metal ions detection in wastewater.  相似文献   

15.
A nickel modified boron doped diamond (Ni‐BDD) electrode and nickel foil electrode were used in the determination of methanol in alkaline solutions. The Ni‐BDD electrode was electrodeposited from a 1 mM Ni(NO3)2 solution (pH 5), followed by repeat cycling in KOH. Subsequent analysis utilised the Ni(OH)2/NiOOH redox couple to electrocatalyse the oxidation of methanol. Methanol was determined to limits of 0.3 mM with a sensitivity of 110 nA/mM at the Ni‐BDD electrode. The foil electrode was less sensitive achieving a limit of 1.6 mM and sensitivity of 27 nA/mM. SEM analysis of the electrodes found the Ni‐BDD to be modified by a quasi‐random microparticle array.  相似文献   

16.
A modified electrode was prepared using electrodeposition methods to immobilize caffeic acid (CAF) onto the surface of a glassy carbon electrode (GCE) to create a polymer suitable for biosensor development. The polymer film coverage of the surface bound species was further optimized using electrodeposition methods, thus increasing the surface coverage to ca. 10?9 mol cm?2. Using cyclic voltammetry, the modified carbon electrode was used to facilitate and observe the electrocatalytic oxidation of coenzymes such as NADH, cysteine, and glutathione at different concentrations. A calibration curve was determined in each case within the concentration range; 300 nM to 10 mM, with the limits of detection (LOD) of 246 µM, 99 µM, 2.2 µM for NADH, cysteine, and glutathione respectively.  相似文献   

17.
We describe a simple method for preparing Au‐TiO2/graphene (GR) nanocomposite by deposition of Au nanoparticles (NPs) on TiO2/GR substrates. The as‐prepared Au‐TiO2/GR was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of Au NPs on TiO2/GR surface remarkably improves the electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2) and β‐nicotinamide adenine dinucleotide (NADH). The Au‐TiO2/GR modified glassy carbon (GC) electrode exhibits good amperometric response to H2O2 and NADH, with linear range from 10 to 200 µM and 10 to 240 µM, and detection limit of 0.7 and 0.2 µM, respectively.  相似文献   

18.
The electroactive composites based on reduced graphene oxide (RGO), poly-o-phenylenediamine (PPD) and heteropolyacids – H4SiW12O40nH2O (SiW) and H3[PW12O40] ⋅ nH2O (PW) was applied to a screen-printed carbon electrode (SPCE) as a planar three-electrode cell as the first step to creating various devices, in particular, sensors and catalysts. We studied potential use of the modified and unmodified SPCE planar electrode in determining the concentration of antitubercular antibiotic isoniazid (isonicotinic acid hydrazide C6H7N3O or INH). The best result was observed for SPCE+RGO-PPD-SiW. CV of normal saline with various concentrations of C6H7N3O demonstrated linear dependence of the relevant anodic peak current either in the bulk solution upon immersion of the modified electrode or in a droplet on the electrode surface.  相似文献   

19.
Sadik Cogal 《Analytical letters》2018,51(11):1666-1679
Poly(3,4-ethylenedioxythiophene) was deposited on a reduced graphene oxide-decorated glassy carbon electrode through an electrochemical polymerization. The resulting glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was applied as an electrochemical biosensor for the determination of dopamine in the presence of ascorbic acid and uric acid. The material deposited on glassy carbon electrode was investigated in terms of morphology and structural analysis. The comparison of electrochemical behavior of the glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode with the glassy carbon electrode-graphene oxide, glassy carbon electrode-reduced graphene oxide, and glassy carbon electrode-poly(3,4-ethylenedioxythiophene) electrodes exhibited high electrocatalytic activity for dopamine detection. Electrochemical kinetic parameters of glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene), including the charge transfer coefficient α (0.49) and electron transfer rate constant ks (1.04), were determined and discussed. The glassy carbon electrode-reduced graphene oxide-poly(3,4-ethylenedioxythiophene) electrode was studied for the determination of dopamine by differential pulse voltammetry and exhibited a linear range from 19.6 to 122.8?µM with a sensitivity of 3.27?µA?µM?1?cm?2 and a detection limit of 1.92?µM. The developed biosensor exhibited good selectivity toward dopamine with high reproducibility and stability.  相似文献   

20.
We report the fabrication of a Ni nanoparticle modified BDD electrode and its application in the electrocatalysis of primary alcohol electrooxidation. Modification was achieved via electrodeposition from Ni(NO3)2 dissolved in sodium acetate solution (pH 5). Characterization of the Ni‐modified BDD (Ni‐BDD) was performed using ex situ atomic force microscopy (AFM) and high resolution scanning electron microscopy (SEM) coupled with energy dispersive X‐ray spectroscopy (EDX). Large nanoparticles of nickel were observed on the BDD surface ranging 5 to 690 nm in height and 0.18 μm?3 in volume, and an average number density of ca. 13×106 nanoparticles cm?2 was determined. The large range of sizes suggests progressive rather than instantaneous nucleation and growth. Electrocatalysis of ethanol and glycerol, was conducted in an alkaline medium using an unmodified BDD, Ni‐BDD and a bulk Ni macro electrode. The Ni‐BDD electrode gave the better electrocatalytic performance, with glycerol showing the greatest sensitivity. Linear calibration plots were obtained for the ethanol and glycerol additions over concentration ranges of 2.8–28.0 mM and 23–230 μM respectively. This gave an ethanol limit of detection of 1.7 mM and sensitivity of 0.31 mA/M, and the glycerol a limit of detection of 10.3 μM with a sensitivity of 35 mA/M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号