首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Room temperature multiferroic electroceramics of Gd doped BiFeO3 monophasic materials have been synthesized adopting a slow step sintering schedule. Incorporation of Gd nucleates the development of orthorhombic grain growth habit without the appearance of any significant impurity phases with respect to original rhombohedral (R3c) phase of un-doped BiFeO3. It is observed that, the materials showed room temperature enhanced electric polarization as well as ferromagnetism when rare earth ions like Gd doping is critically optimized (x=0.15) in the composition formula of Bi1+2xGd2x/2Fe1−2xO3. We believe that magnetic moment of Gd+3 ions in Gd doped BiFeO3 tends to align in the same direction with respect to ferromagnetic component associated with the iron sub lattice. The dielectric constant as well as loss factor shows strong dispersion at lower frequencies and the value of leakage current is greatly suppressed with the increase in concentration of x in the above composition. Addition of excess bismuth and Gd (x=0.1 and 0.15) caused structural transformation as well as compensated bismuth loss during high temperature sintering. Doping of Gd in BiFeO3 also suppresses spiral spin modulation structure, which can change Fe-O-Fe bond angle or spin order resulting in enhanced ferromagnetic property.  相似文献   

2.
This paper reports on multiferroic properties of Ho substituted BiFeO3 (Bi1−xHoxFeO3) ceramics. It is observed that for x=0.15, a prominent ferroelectric loop is seen at 300 K even if the system remains in rhombohedral (R3c) phase without appearance of any observable impurity phases. A well shaped M-H loop is observed at 10 K for x=0.15. However it showed ferromagnetism, confirming the contribution of Ho3+ towards enhancement of ferromagnetic properties of BiFeO3 at 300 K. Suppression of impurity phases of pure BiFeO3 bulk ceramic favors the reduction of mobile oxygen vacancies and reduces leakage current, due to which ferroelectric properties of BiFeO3 is enhanced. We argue that Ho substitution at Bi site is likely to suppress the spiral spin modulation and at the same time increase the canting angle, which favors enhanced multiferroic properties. XRD, SEM, magnetization, polarization and chemical bonding analysis measurements were carried out to explain the multiferroic behavior.  相似文献   

3.
Multiferroic BiFeO3 and Bi0.92Dy0.08FeO3 ceramics were prepared to study their crystal structures and piezoelectric properties. BiFeO3 exhibits rhombohedral phase below 810 °C. Although Bi0.92Dy0.08FeO3 ceramic also shows rhombohedral phase at room temperature, it allows the coexistence of rhombohedral phase and orthorhombic phase at 460–650 °C. Both samples have maximum polarizations of >21 μC/cm2 and piezoelectric d33 values of ~37 pC/N at room temperature. Their polarized slices show the dielectric anomalies and impedance anomalies because of vibrating resonances below 500 °C, and the thickness vibration electromechanical coupling factor is ~0.6 and ~0.4 for BiFeO3 and Bi0.92Dy0.08FeO3, respectively. The vibrating resonances confirm piezoelectric responses. Furthermore, samples' impedance and resistance decrease fast with temperature increasing, which screens piezoelectric response above 550 °C.  相似文献   

4.
Ba doped Bi1.04−xBaxFeO3 ceramics with x up to 0.30 have been prepared by the tartaric acid modified sol–gel method. The X ray diffraction patterns show that the structure transforms from rhombohedral to tetragonal with increasing the Ba substitution concentration from 10% to 30% and the coexistence of distorted rhombohedral and tetragonal phases in 20% Ba substituted BiFeO3, which was further confirmed by the Raman spectra. Bi0.84Ba0.20FeO3 exhibits the highest magnetization (1.6 emu/g under magnetic field of 12 kOe) compared with the other samples of different Ba substitution concentration. Significant enhancement of the ferroelectricity has been observed in 20% and 30% Ba substituted BiFeO3 with saturate polarization close to 6.6 μC/cm2 for Bi0.74Ba0.30FeO3. The magnetoelectric coupling of Bi0.84Ba0.20FeO3 has been measured and the maximum decrease of magnetization under magnetic field of 9.8 kOe was about 0.06 emu/g with increasing applied electric field to 11 kV/cm, and the magnetoelectric coefficient is 1.5×10−12 s/m.  相似文献   

5.
In this work, X-ray diffraction data taken on Bi1−xLaxFeO3 solid solutions are used to verify the following structural phase transitions: “polar rhombohedral-antipolar orthorhombic” at x≈0.16 and “commensurate-incommensurate” within the orthorhombic phase at x≈0.18. In contrast, in the Bi1−xPrxFeO3 series, the polar rhombohedral phase transforms into an antipolar orthorhombic one at x≥0.13. The polar rhombohedral phase near the morphotropic phase boundary exhibits an isothermal transformation into an antipolar orthorhombic phase, though the transformation occurs much faster in the case of La-doped compounds. The incommensurate structural phase was not detected in Bi1−xPrxFeO3 solid solutions. The ternary structural phase diagram is constructed for (Bi,La,Pr)FeO3 systems. In addition, the polar rhombohedral phase exhibits a magnetic field-induced transition from the modulated antiferromagnetic state into a homogeneous weak ferromagnetic state whereas the antipolar phase is a weak ferromagnetic state in the absence of an external field.  相似文献   

6.
Polycrystalline Bi1?x Eu x FeO3 (x=0.00–0.25) ceramics were synthesized by the solid state reaction method with the rapid liquid phase sintering process. The effects of Eu substitution on the structure, and ferroelectric and magnetic properties of BiFeO3 ceramics were investigated. X-ray diffraction measurements reveal that the structure of BiFeO3 was changed from rhombohedral to orthorhombic and the impurity phases were decreased both due to Eu substitution. Raman spectra results also confirm that a structure transition occurs in the Eu concentration range of 0.15–0.20. The SEM investigation has suggested that the Eu substitution hinders the grain growth. Vibrating sample magnetometer measurements indicate ferromagnetism in Eu-substituted BiFeO3 ceramics. It is found that the room temperature magnetic moment increases with increasing Eu concentration due to the suppressed or broken cycloid spin structure. Ferroelectric measurements show that Eu substitution enhances the polarization due to the significant decrease of the electric leakage of the samples. Therefore, the Eu-substituted BiFeO3, or more complicated substituted BiFeO3 based on Eu substitution, will have great potential for many practical applications.  相似文献   

7.
The magnetic behaviour of TmxDy1?xFeO3 (x = 0.3; 0.5; 0.7; 1.0) single crystals in the temperature range 90-4.2° K were investigated. The transition from the weak ferromagnetic to antiferromagnetic state was observed at about 9° K for Tm0.3Dy0.7FeO3 single crystal. The reorientation of weak ferromagnetic moment from c- to a-axis was observed for Tm0.7Dy0.3FeO3 single crystal at 35–65° K. The magnetic structure change of iron and rare-earth ions took place when external magnetic field was applied. The thulium and disprosium ion interaction does not essentially influence on the single crystal magnetic properties of the substituted compounds in a low temperature range.  相似文献   

8.
A series of rare-earth doped BiFeO3 samples, Bi1−xRxFeO3 (x=0-1, R=La, Nd, Sm, Eu and Tb), were prepared in this work. X-ray diffraction analysis showed that the structure of rare-earth doped BiFeO3 was transformed from rhombohedral lattice to orthorhombic one by increasing x. The lattice constants and unit-cell volume decreased with the increasing of the doping content, while both the Néel temperature and magnetization were enhanced. A magnetic phase transition was observed at about 35 K for BiFeO3. The variation of the magnetization with temperature depended on applied field strength and magnetizing history, which was explained according to the antiferromagnetic exchange interaction between Fe and R sites in Bi1−xRxFeO3(x>0). The magnetocrystalline anisotropy contributed by Fe sublattice gave rise to a large coercivity in BixNd1−xFeO3 with an orthorhombic structure.  相似文献   

9.
Bi1+xCexFeO3 (Ce–BFO) for x=0, 0.05, 0.1, and 0.15 monophasic ceramic samples were successfully synthesized by conventional solid-state reaction routes. The influences of Ce doping on structural, dielectric, ferroelectric, leakage current and capacitive properties of BiFeO3 ceramics were investigated intensively. At higher concentrations of x (x=0.1 and 0.15) the samples showed good crystallinity with almost impurity free phases. No structural phase transformation took place after partial doping of Ce ions and all ceramic bulk samples remain in their rhombohedral structure with space group R3c. The dielectric behavior of the samples improved significantly and the ferroelectric hysteresis loops changed their shape from rounded to a strongly nonlinear typical ferroelectric feature mainly originating from the domain switching and became enhanced with increase in doping concentration of cerium (Ce). Experimental results also suggested that partial doping of higher valence, smaller ionic radius Ce ions in BiFeO3 forces the reduction of oxygen vacancies, resulting in a great suppression of leakage current. It is found that the sharp capacitance peak/discontinuity present in the CV characteristics of Ce–BFO for different Ce doping concentrations is directly associated with the polarization reversal. Incorporation of excess bismuth in the presence of Ce in BiFeO3 is expected to compensate Bi loss during high temperature sintering and caused structural distortion which also favors enhancement of ferroelectric properties in Ce-doped BFO.  相似文献   

10.
The polycrystalline samples of (Bi1?x K x ) (Fe1?x Nb x ) O3 (BKFN) for x = 0.0, 0.1, 0.2 and 0.3 were synthesized by a solid-state reaction method. The X-ray diffraction patterns of BKFN exhibit that the addition of KNbO3 in BiFeO3 gradually changes its structure from rhombohedral to pseudocubic. The analysis of scanning electron micrograph clearly showed that the sintered samples have well-defined and uniformly distributed grains. Addition of KNbO3 to BiFeO3 enhances the dielectric, ferroelectric and ferromagnetic properties of BiFeO3. Detailed studies of impedance and related parameters of BKFN using the complex impedance spectroscopic technique exhibit the significant contributions of grain and grain boundaries in the resistive and transport properties of the materials. Some oxygen vacancies created in the ceramic samples during high-temperature processing play an important role in the conduction mechanism. The leakage current or tangent loss of BiFeO3 is greatly reduced on addition of KNbO3 to the parent compound BiFeO3. Preliminary studies of ferroelectric and magnetic characteristics of the samples reveal the existence of ferroelectric, and weak ferromagnetic ordered ceramics.  相似文献   

11.
Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles, Bi0.8Ca0.2−xBaxFeO3 (x=0-0.20), were prepared by a sol-gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07-0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the TN of the nanoparticles was obviously increased. All the Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles presented the high ratio of Mr/M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe.  相似文献   

12.
Mössbauer studies of perovskites Bi1?x La x FeO3 (x = 0, 0.10, 0.20, 0.61, 0.90, 1.00) were conducted at 295 and 87 K. The spatial spin-modulated structure (SSMS) observed in perovskites BiFeO3 and Bi0.9La0.1FeO3 leads to a specific distribution of hyperfine fields P(B) with two peaks. Substitution of La for Bi (x = 0.2) destructs the SSMS. The concentration dependences of the hyperfine field (B), isomer shift (?) and quadrupole shift (δ) were measured. The iron ions are in the trivalent state. The local magnetic moments μ(Fe) of the Fe3+ ions are determined.  相似文献   

13.
马争争  李建青  田召明  邱洋  袁松柳 《中国物理 B》2012,21(10):107503-107503
The 0.6(Bi1-xLax)FeO 3-0.4SrTiO 3(x = 0,0.1) multiferroic ceramics are prepared by a modified Pechini method to study the effect of substitution of SrTiO3 and La in BiFeO3.The X-ray diffraction patterns confirm the single phase characteristics of all the compositions each with a rhombohedral structure.The magnetic properties of the ceramics are significantly improved by a solid solution with SrTiO3 and substitution of La.The values of the dielectric constant ε r and loss tangent tan δ of all the samples decrease with increasing frequency and become constant at room temperature.The La-doped 0.6BiFeO3-0.4SrTiO3 ceramics exhibit improved dielectric and ferroelectric properties,with higher dielectric constant enhanced remnant polarization(Pr) and lower leakage current at room temperature.Compared with a anti-ferromagnetic BiFeO3 compound,the 0.6(Bi0.9La0.1)FeO3-0.4SrTiO3 sample shows the optimal ferromagnetism with remnant magnetization M r ~ 0.135 emμ/g and ferroelectricity with Pr ~ 5.94 μC/cm 2 at room temperature.  相似文献   

14.
The crystal structure of solid solutions in the Bi1 ? x Pr x FeO3 system near the structural transition between the rhombohedral and orthorhombic phases (0.125 ≤ x ≤ 0.15) has been studied. The structural phase transitions induced by changes in the concentration of praseodymium ions and in the temperature have been investigated using X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. It has been established that the sequence of phase transformations in the crystal structure of Bi1 ? x Pr x FeO3 solid solutions with variations in the temperature differs significantly from the evolution of the crystal structure of the BiFeO3 compounds with the substitution of other rare-earth elements for bismuth ions. The regions of the existence of the single-phase structural state and regions of the coexistence of the structural phases have been determined in the investigation of the crystal structure of the Bi1 ? x Pr x FeO3 solid solutions. A three-phase structural state has been revealed for the solid solution with x = 0.125 at temperatures near 400°C. The specific features of the structural phase transitions of the compounds in the vicinity of the morphotropic phase boundary have been determined by analyzing the obtained results. It has been found that the solid solutions based on bismuth ferrite demonstrate a significant improvement in their physical properties.  相似文献   

15.
Magnesium (Mg) and Zirconium (Zr) doped bismuth ferrite (BiFeO3; BFO) such as Bi1?xMgxFeO3 (Mg doped BFO; BMO), BiFe1?xZrxO3 (Zr doped BFO; BZO) and Bi1?xMgxFe1?xZrxO3 (both Mg and Zr doped BFO; BMZO) were synthesized by solid-state reaction techniques with dopant concentrations x?=?0 and 0.1, respectively. The distorted rhombohedral structures of doped BFO were confirmed by X-ray diffraction analysis. The microstructural analysis revealed that there were uniform dispersions and homogeneous distributions of ceramics in BMZO as compared to BMO, BZO and pure BFO. The presence of both grain and grain boundary in BMZO indicated its good electrical response than others as evidenced from impedance analysis and in agreement with AC conductivity study. The dielectric and ferroelectric measurement signified that BMZO possessed enhanced dielectric constant and high remanent polarization thus could be a better prominent candidate than others to be used in electronic devices.  相似文献   

16.
杨洋  刘玉龙  朱恪  张丽艳  马树元  刘洁  蒋毅坚 《中国物理 B》2010,19(3):37802-037802
This paper reports that La-doped BiFeO 3(Bi1-x La x FeO3,x = 0,0.1,0.2,0.3,0.6,0.8 and 1.0) were studied by using micro-Raman spectroscopy and x-ray diffraction(XRD).The XRD patterns indicate that the structure of Bi1-xLaxFeO 3 changes from rhombohedral BiFeO3 to orthorhombic LaFeO3.The results of Raman spectroscopy show good agreement with the XRD results.Strikingly,the phonon peak at around 610 cm-1 and the two-phonon peaks in the high frequency range exist in all compounds and enhance with increasing La substitution.The increasing intensity of the 610 cm-1 peak is attributed to the changes in the FeO 6 octahedron during the rhombohedral-orthorhombic phase transition.The enhancements of the two-phonon peaks are associated with the breakdown of the cycloid spin configuration with the appearance of the orthorhombic structure.These results indicate the existence of strong spin-phonon coupling in Bi1-xLax FeO3,which may provide useful information for understanding the effects of La content on the structural and magnetic properties of Bi1-xLaxFeO3.  相似文献   

17.
In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO3 and Bi0.85Dy0.15FeO3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO3 samples are obviously broadened after magnetic annealing, whereas those of Bi0.85Dy0.15FeO3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO3 samples, the remnant polarizations (Pr) are suppressed; in contrast, for Bi0.85Dy0.15FeO3 samples, Pr is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed.  相似文献   

18.
The interplay between the superconducting phase and spin density wave order phase was studied. We report the magnetic and superconducting properties of the hole-doped FeAs-based superconducting compound La0.87−xLnxSr0.13FeAsO (Ln=Sm, Gd, Dy; 0≤x≤0.06). Both resistivity and magnetic susceptibility measurements show that the superconducting transition temperature decreases with increase in composition of magnetic ions. The hysteresis loop of the La0.87−xLnxSr0.13FeAsO sample shows a superconducting hysteresis in addition to a paramagnetic background. The experiment demonstrates that the magnetism and superconductivity coexist in hole-doped FeAs-based superconducting compounds. Among these three magnetic rare-earth elements, the influence of Dy3+ doping on superconductivity is more evident than that of Gd3+ doping, while the influence of Sm3+ doping is the weakest. The trend is consistent with the variation of the lattice parameter along c-axis.  相似文献   

19.
Investigation of crystal structure, dielectric, magnetic and local ferroelectric properties of the diamagnetically substituted Bi1−xAxFeO3−x/2 (A=Ca, Sr, Pb, Ba; x=0.2, 0.3) polycrystalline samples has been carried out. It has been shown that the heterovalent A2+ substitution result in the formation of oxygen vacancies in the host lattice. The solid solutions have been found to possess a rhombohedrally distorted perovskite structure described by the space group R3c. Piezoresponse force microscopy has revealed signs of existence of the ferroelectric polarization in the samples at room temperature. Magnetization measurements have shown that the magnetic state of these compounds is determined by the ionic radius of the substituting elements. A-site substitution with the biggest ionic radius ions has been found to suppress the spiral spin structure of BiFeO3 giving rise to the appearance of room-temperature weak ferromagnetism.  相似文献   

20.
Multiferroics having composition Bi0.80-xBa0.20HoxFeO3 (BBFO, BBHFO5, BBHFO10, BBHFO15 and BBHFO20 for x?=?0.0, 0.05, 0.10, 0.15 and 0.20 respectively) were synthesized by method of solid state reaction. The crystal structure has been studied using X-ray diffraction technique. The X-ray patterns show enormous transform in crystal structure at concentration x?=?0.20. The Rietveld refinement of XRD patterns indicates that at concentration x?=?0.0 sample have rhombohedral structure with R3c space group while for the concentration x?=?0.05, 0.10, 0.15 and 0.20, the mixed phase including rhombohedral R3c and triclinic P1 space groups were obtained with best fitting. This phase transformation in crystal structure is observed due to mismatching of ionic radii of doped ions and parent ions. Magnetic properties of all samples were carried out by using vibrating sample magnetometry. M-H hysteresis loops shows that with doping of Ba and Ho antiferromagnetic BiFeO3 (BFO) transforms into ferromagnetic. The dielectric and ferroelectric measurements were carried out which shows that dielectric constant, dielectric loss and ferroelectric properties are enhanced with co-doping of Ho in comparison of the pristine BFO due to structure deformation and decrease in oxygen vacancies with higher concentration of Ho. Significant improvement has been observed in dielectric constant and remnant magnetization values with increasing content of Ho and decrease in the dielectric loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号