首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
正Sulfur-containing organic compounds such as sulfides,sulfoxides and sulfones, have played significant roles in the fields of organic synthesis, pharmaceuticals, and agrochemicals. The selective oxidation of the parent sulfides has been considered as one of the most straightforward methods for the construction of sulfoxides and sulfones. Therefore, a plethora of oxidative systems have been developed for the  相似文献   

2.
Solvent-free organic reactions have been attracting great interest of chemists due to the elimination of the usage of harmful organic solvents,low costs,and simplicity in the procedure1.Solvent-free mechanochemical reactions of fullerenes were explored and are significant for the reactions of fullerenes because the low solubility of fullerenes in common organic solvents requires large quantity of organic solvents and some novel fullerene reactions could only occur in the solid-state reaction2.…  相似文献   

3.
In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crystallinity, high mobility, and so on, DTBDT-based semiconductors have demonstrated remarkable performance in organic electronic devices, such as organic feld-effect transistor(OFET), organic photovoltaic(OPV), organic photodetectors(OPDs). Driven by this success, recent developments in the area of DTBDT-based semiconductors for applications in electronic devices are reviewed, focusing on OFET, OPV, perovskite solar cells(PSCs), and other organic electronic devices with a discussion of the relationship between molecular structure and device performance. Finally, the remaining challenges, and the key research direction in the near future are proposed, which provide a useful guidance for the design of DTBDT-based materials.  相似文献   

4.
Open-shell oligomers and polymers have exhibited intriguing electronic and magnetic properties, making them highly desirable for a wide range of applications, including ambipolar organic field-effect transistors(OFETs), photodetectors, organic thermoelectrics, and spintronics.Although open-shell ground states have been observed in certain small molecules and doped organic semiconductors, the exploration of openshell ground-state conjugated polymers is still limited, and the strategies for design...  相似文献   

5.
Barbituric acid (BA) is a very important kind of compound in biological chemistry and medicine. It can be applied in abirritative medicine and antioxidants.1 It is an important sort of raw material for organic synthe-sis.2 It predicts the important reactive mechanism for organic synthesis.3 Some investigations for NLO prop-erties of a series of BA derivatives have been reported by Feng and coworkers in the view of theory.4,5 The Schiff base has extensive application in the fields of organi…  相似文献   

6.
Pursuing material development for next-generation batteries,organic electrode materials have shown great potential for lithium-ion batteries.However,their widespread adopting is plagued by intrinsic problems such as poor electronic conductivity,high dissolution inside electrolytes and unstable chemical peculiarity.Recently,nanostructured-strategies promoted organic electrodes with exotic properties for enhancing electron and ion transport together with the stability during electrochemical process,have received increasing attention and have been extensive applied in boosting the organic lithium-ion based energy storage.In this review,we summarize the applications of nanostructures to improve the performance of both organic anodes and cathodes,including(i)nanoscale design of zero-dimensional organic electrode materials,(ii)strategies of one-dimensional nanostructured organic electrode materials,(iii)construction of two-dimensional nanosized organic composite electrodes,and(iv)three-dimensional exploration of nanosized organic electrodes.We hope to stimulate high-quality applied research on understanding and handling the relationship between the nanostructure and performance of organic lithium-ion batteries that might speed up the commercialization of organic lithium ion batteries.  相似文献   

7.
IntroductionOrganomercurials have been used extensively in organic synthesis and synthesis of other organometallics due to their ability to accommodate practically all the important organic functional groups and their ease in undergoing transmetallation for syntheses of transition metal organometallics which are very useful in organic synthesis. Recently, we reported the synthesis of optically active 1,2-disubstituted cyclomercurated ferrocenylimines by transmetallation reaction of planar chir…  相似文献   

8.
Electrodeposition is an old and effective method for the fabrication of organic films. Though electrodeposited organic films have been widely used in various applications, highly luminescent films have been a great challenge because the electrochemically doped state may strongly quench the fluorescence. In the first part of this review, the organic electrodeposition techniques, along with general electropolymerization and other special electrodepositions are introduced. In the second part of the...  相似文献   

9.
The fluorescence spectra and photodimerization of anthrylmethyl a,w-alkanedioates (A-Mn-A) both in organic and in aqueous organic mixed solvents have been studied.In aqueous organic mixed solvents strong intramolecular excimer emission is detected and the quantum yield for the intramolecular photodimerization is significantly greater than those in organic solvents.These observations suggest that hydrophobic interactions force A-Mn-A molecule to self-coil.The ratio of the head-to-head to head-to-tail products in the intramolecular photodimers of A-Mn-A depends on the length of the linking chain.This work presents a successful example of application of hydrophobic interactions to enhancement of large-ring formation.  相似文献   

10.
Not only the mudstones and carbonates deposited in hypersaline environments, but also evaporites can be source rocks of petroleum. They all have a peculiar composition of hydrocarbon such as the strong predominance of phytane, the richness in gammacerane, the frequent preference of even carbon number n-alkanes, and have a generative potential for less mature oils in diagenesis of organic matter.  相似文献   

11.
6,6′‐Dimethoxygossypolone (systematic name: 7,7′‐dihydroxy‐5,5′‐diisopropyl‐6,6′‐dimethoxy‐3,3′‐dimethyl‐1,1′,4,4′‐tetraoxo‐2,2′‐binaphthalene‐8,8′‐dicarbaldehyde), C32H30O10, is a dimeric molecule formed by oxidation of 6,6′‐dimethoxygossypol. When crystallized from acetone, 6,6′‐dimethoxygossypolone has monoclinic (P21/c) symmetry, and there are two molecules within the asymmetric unit. Of the four independent quinoid rings, three display flattened boat conformations and one displays a flattened chair/half‐chair conformation. The angles between the planes of the two bridged naphthoquinone structures are fairly acute, with values of about 68 and 69°. The structure has several intramolecular O—H...O and C—H...O hydrogen bonds and several weak intermolecular C—H...O hydrogen bonds, but no intermolecular O—H...O hydrogen bonds.  相似文献   

12.
The title complex, [Rh(C10H15)Cl(C14H12N2O4)]Cl·2C4H5NO3, has been synthesized by a substitution reaction of the precursor [bis(2,5‐dioxopyrrolidin‐1‐yl) 2,2′‐bipyridine‐4,4′‐dicarboxylate]chlorido(pentamethylcyclopentadienyl)rhodium(III) chloride with NaOCH3. The RhIII cation is located in an RhC5N2Cl eight‐coordinated environment. In the crystal, 1‐hydroxypyrrolidine‐2,5‐dione (NHS) solvent molecules form strong hydrogen bonds with the Cl counter‐anions in the lattice and weak hydrogen bonds with the pentamethylcyclopentadienyl (Cp*) ligands. Hydrogen bonding between the Cp* ligands, the NHS solvent molecules and the Cl counter‐anions form links in a V‐shaped chain of RhIII complex cations along the c axis. Weak hydrogen bonds between the dimethyl 2,2′‐bipyridine‐4,4′‐dicarboxylate ligands and the Cl counter‐anions connect the components into a supramolecular three‐dimensional network. The synthetic route to the dimethyl 2,2′‐bipyridine‐4,4′‐dicarboxylate‐containing rhodium complex from the [bis(2,5‐dioxopyrrolidin‐1‐yl) 2,2′‐bipyridine‐4,4′‐dicarboxylate]rhodium(III) precursor may be applied to link Rh catalysts to the surface of electrodes.  相似文献   

13.
Cocrystallization of 2,2′‐dithiodibenzoic acid with isonicotinohydrazide from methanol solution yields the 1:2 cocrystal 2,2′‐dithiodibenzoic acid–isonicotinohydrazide (1/2), C14H10O4S2·2C6H7N3O. The component molecules are linked by intermolecular O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds into layers running parallel to the (010) plane, and these layers are further linked into a three‐dimensional framework structure by means of weak aromatic π–π stacking interactions. As a potential cocrystallization agent, isonicotinohydrazide may be used for effective and versatile synthetic supramolecular strategies utilizing hydrogen bonding of specific molecular building blocks.  相似文献   

14.
The structures of N,N′‐bis(2‐methylphenyl)‐2,2′‐thiodibenzamide, C28H24N2O2S, (Ia), N,N′‐bis(2‐ethylphenyl)‐2,2′‐thiodibenzamide, C30H28N2O2S, (Ib), and N,N′‐bis(2‐bromophenyl)‐2,2′‐thiodibenzamide, C26H18Br2N2O2S, (Ic), are compared with each other. For the 19 atoms of the consistent thiodibenzamide core, the r.m.s. deviations of the molecules in pairs are 0.29, 0.90 and 0.80 Å for (Ia)/(Ib), (Ia)/(Ic) and (Ib)/(Ic), respectively. The conformations of the central parts of molecules (Ia) and (Ib) are similar due to an intramolecular N—H...O hydrogen‐bonding interaction. The molecules of (Ia) are further linked into infinite chains along the c axis by intermolecular N—H...O interactions, whereas the molecules of (Ib) are linked into chains along b by an intermolecular N—H...π contact. The conformation of (Ic) is quite different from those of (Ia) and (Ib), since there is no intramolecular N—H...O hydrogen bond, but instead there is a possible intramolecular N—H...Br hydrogen bond. The molecules are linked into chains along c by intermolecular N—H...O hydrogen bonds.  相似文献   

15.
The title complex, [CuCl2(C6H6N4S2)], has a flattened tetrahedral coordination. The CuII atom is located on a twofold rotation axis and is coordinated by two N atoms from a chelating 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and by two Cl atoms. Intramolecular hydrogen bonding exists between the amino groups of the 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and the Cl atoms. The intermolecular separation of 3.425 (1) Å between parallel bi­thia­zole rings suggests there is a π–π interaction between them.  相似文献   

16.
Structure analyses of 4,4′‐bis(4‐hydroxy­butyl)‐2,2′‐bi­pyridine, C18H24N2O2, (I), and 4,4′‐bis(4‐bromo­butyl)‐2,2′‐bi­pyridine, C18H22Br2N2, (II), reveal intermolecular hydrogen bonding in both compounds. For (I), O—H·N intermolecular hydrogen bonding leads to the formation of an infinite two‐dimensional polymer, and π stacking interactions are also observed. For (II), C—H·N intermolecular hydrogen bonding leads to the formation of a zigzag polymer. The two compounds crystallize in different crystal systems, but both mol­ecules possess Ci symmetry, with one half mol­ecule in the asymmetric unit.  相似文献   

17.
The title complex, [Ni2Cl4(C22H17N3)2], was synthesized solvothermally. The molecule is a centrosymmetric dimer with the unique NiII centre in a distorted octahedral N3Cl3 coordination environment. The chloride bridges are highly asymmetric. In the 4′‐p‐tolyl‐2,2′:6′,2′′‐terpyridine ligand, the p‐tolyl group is perfectly coplanar with the attached pyridine ring, and this differs from the situation found in previously reported compounds; however, there are no π–π interactions between the ligands. The terminal Cl atom forms four intermolecular C—H...Cl hydrogen bonds with one methyl and three methine groups. The methyl group also forms intermolecular C—H...π interactions with a pyridine ring. These nonclassical hydrogen bonds extend the molecule into a three‐dimensional network.  相似文献   

18.
采用水热法设计合成了两个新型三维超分子化合物H2L·H2O (1)和[Ag(bpy)2]·HL·H2O (2) (其中bpy=2,2'-联吡啶, H2L=2,4′-二羧基二苯甲酮),晶体结构分析表明,它们均是通过氢键采用不同的连接方式拓展而成。其中,化合物1 是2,4′-二羧基二苯甲酮和水分子通过O–H···O氢键形成的一维梯状链扩展构筑的三维超分子体系;化合物2 则是2,4′-二羧基二苯甲酮和水分子通过两种氢键形成含有一维隧道的三维超分子体系。有趣的是,[Ag(bpy)2]+ 阳离子通过π–π 堆积和弱的Ag···Ag相互作用连在一起,进而以客体形式填充其中。荧光性质研究表明,由于存在bpy的螯合与堆积效应,化合物2相比配体和化合物1,其荧光发射峰发生红移。  相似文献   

19.
The title copper complex, [Cu(H2P2O7)(C15H11N3)]2·4.5H2O, consists of two very similar independent Cu(Tpy)H2P2O7 monomeric units (Tpy is 2,2′:6′,2′′‐terpyridine) plus four and a half water molecules of hydration, some of which are disordered. Tpy units bind through the usual triple bite via their N atoms, and the H2P2O72− anions coordinate through two O atoms from two different phosphate units. Each independent CuN3O2 chromophore can be described as a slightly deformed square pyramid, with one of them having a sixth, semicoordinated, O atom from a centrosymmetrically related CuN3O2 unit in a weakly bound second apical position suggesting an octahedral environment for the cation and weak dimerization of the molecule. The two independent complex molecules are connected via two strong O—H...O interactions between the phosphate groups to form hydrogen‐bonded dinuclear units, further linked into [111] columns, resulting in a very complex three‐dimensional supramolecular structure through a variety of classical and nonclassical hydrogen bonds, as well as π–π interactions.  相似文献   

20.
The title ionic compound, [Ni(C12H12N2)(H2O)4]SO4·H2O, is composed of an NiII cation coordinated by a chelating 4,4′‐dimethyl‐2,2′‐bipyridine ligand via its two N atoms [mean Ni—N = 2.056 (2) Å] and by four aqua ligands [mean Ni—O = 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule. Even though the individual constituents are rather featureless, they generate an extremely complex supramolecular structure consisting of a central hydrogen‐bonded two‐dimensional hydrophilic nucleus made up of complex cations, sulfate anions and coordinated and solvent water molecules, with pendant hydrophobic 4,4′‐dimethyl‐2,2′‐bipyridine ligands which interact laterally with their neighbours viaπ–π interactions. The structure is compared with closely related analogues in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号