首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We have studied the catastrophic relaxation in superfluid 3He-B as a function of magnetic field for a sample pressure of 31 bars. "Catastrophic relaxation" refers to a novel magnetic relaxation process which rapidly disrupts the homogeneous precession of nuclear spins in NMR experiments on the B phase. The catastrophe was observed through its effect on the evolution of a long-lived coherent dynamic state, the homogeneously precessing domain. Our measurements reveal that the onset of catastrophic relaxation is suppressed to lower temperatures by a strong magnetic field.  相似文献   

2.
本文对具有特定横向弛豫时间(T2)的硫酸铜溶液进行了多回波间隔(TE)的核磁共振(NMR)实验,并利用数值模拟对32组具有不同弛豫分量的模型进行了变TE模拟实验,定量研究了TE对致密油气、页岩气等低孔低渗储层NMR孔隙度的影响规律.实验结果表明,随着TE的增大,各T2弛豫组分NMR孔隙度先维持在100%左右,然后迅速衰减,当TE增加到一定数值时,趋近于0;不同T2弛豫组分NMR孔隙度开始迅速衰减及最后变为0的TE值存在显著差异.根据不同T2弛豫组分NMR孔隙度与TE的关系,将整个NMR测量分为无损测量区、快速衰减区、无效参数区和仪器盲区4个区域.对特定弛豫组分而言,在快速衰减区弛豫组分损失量与TE呈对数关系,本文还给出了该区域NMR孔隙度的校正公式及方法.  相似文献   

3.
Qualitative and quantitative proton magnetic resonance imaging techniques were applied to persimmon (Diospyros kaki cv 'Fuyu') fruit during development and post-harvest ripening. Spin-lattice (T(1)) relaxation times in mesocarp parenchyma and vascular tissue exhibited a sigmoidal pattern of increase leading to commercial harvest, but declined abruptly during ripening, 2.5 weeks after picking. T(1) times in parenchyma tissue were 1000 and 2100 ms in fruitlets, and at commercial harvest, respectively. T(1) times in vascular tissue were consistently shorter than those in parenchyma tissue by 300 to 600 ms. In contrast, spin-spin (T(2)) relaxation varied over a narrow range during development, i.e., 82 to 106 ms, and 59 to 73 ms, for parenchyma and vascular tissue, respectively. During ripening, T(2) measurements increased smoothly, commencing one week after harvest. Dry matter, water content, skin color, water-soluble tannins, soluble solids, and mineral and carbohydrate composition was also determined in companion fruit. No obvious associations linking physico-chemical and MR parameters were established, implying that the changes in relaxation measurements observed in 'simple' fruit systems can not be rationalised without recourse to more complex investigations involving SEM and different NMR spectroscopic and imaging techniques.  相似文献   

4.
During adiabatic excitation, the nuclear magnetization in the transverse plane is subject to T(2) (spin-spin) relaxation, depending on the pulse length τ. Here, this property is exploited in a method of measuring T(2) using the ratio of NMR signals acquired with short and long-duration self-refocusing adiabatic pulses, without spin-echoes. This Dual-τ method is implemented with B(1)-insensitive rotation (BIR-4) pulses. It is validated theoretically with Bloch equation simulations independent of flip-angle, and experimentally in phantoms. Dual-τT(2) measurements are most accurate at short T(2) where results agree with standard spin-echo measures to within 10% for T(2) ≤ 100 ms. Dual-τ MRI performed with a long 0° BIR-4 pre-pulse provides quantitative T(2) imaging of phantoms and the human foot while preserving desired contrast and functional properties of the rest of the MRI sequence. A single 0° BIR-4 pre-pulse can provide T(2) contrast-weighted MRI and serve as a "T(2)-prep" sequence with a lower B(1) requirement than prior approaches. Finally, a Tri-τ experiment is introduced in which both τ and flip-angle are varied, enabling measurement of T(2), T(1) and signal intensity in just three acquisitions if flip-angles are well-characterized. These new methods can potentially save time and simplify relaxation measurements and/or contrast-weighted NMR and MRI.  相似文献   

5.
The aim of the present study was to apply nuclear magnetic resonance (NMR) relaxation measurements for understanding the microstructure evolution of cement paste during hydration. Ordinary Portland cement powder was mixed with double-distilled water, and hydration process was analyzed via 1H proton NMR spin–spin relaxation time. In order to induce strong modification of the rate of hydration, water-to-cement ratio, curing temperature and cement fineness were varied. The evolution of the NMR spin–spin relaxation time, T 2, of hydrating water versus the hydration time was monitored from the very first few minutes after the mixing up to several hours. Authors' address: Marcella Alesiani, Department of Physics, University La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy  相似文献   

6.
Porous substrates made of poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBHV) were prepared by a particulate leaching method. After removing the salt by extraction in water, proton nuclear magnetic resonance (NMR) relaxometry and imaging were performed on sets of PHBHV substrates immersed in phosphate-buffered solution during 3 months at different time points. Polarized optical microscopy studies were performed on thin sections, 25 and 5 mum, of the PHBHV samples. The results of NMR relaxometry showed two (1)H nuclei populations, well distinguishable on the free induction decay (FID), due to the different decay time constants, a factor of 10(2) apart. Thus, it was possible to separate the two populations, giving separate distributions of T(1) relaxation times. One population could be associated with water protons in the pores and the other to macromolecular protons. The distributions of T(1) and T(2) of the water proton shifted to lower values with increasing immersion time to a constant value after 30 days. The results obtained by NMR imaging showed an initial increase in the apparent porosity, reaching a plateau after 25 days of immersion. This increase is attributed mainly to the absorption of water in the microporosity as supported by the results of the relaxometry measurements and shown by scanning electron microscopy. The average porosity measured by NMR imaging at the plateau, 78+/-3%, is slightly higher than that determined by optical microscopy, 73+/-9%, which may be due to the fact that the latter method did not resolve the microporosity. Overall, the results suggest that at early stages after immersing the scaffolds in the aqueous medium, first 30 days approximately, NMR imaging could underestimate the porosity of the substrate.  相似文献   

7.
The (1)H NMR spin-lattice relaxation time, T(1), of saturated sands depended on the chemistry of the pore fluid, pore size distribution, and relaxivity of the surface. In the absence of paramagnetic impurities, surface relaxivities of quartz sand and silica gel samples of known porosity and surface area at any pH were lower than any previously reported values. Relaxation rate of the bulk pore fluid increased linearly with increasing Fe(III) concentration and varied with speciation of the ion. With only 0.01% of the silica surface sites occupied by sorbed Fe(III) ions, surface relaxivity increased by an order of magnitude. In addition, low concentrations of Fe(III)-bearing solid phases present as surface coatings or as separate mineral grains increased surface relaxation as much as two orders of magnitude. We believe that observations of relatively constant surface relaxivity in rocks by previous researchers were the result of consistently high surface concentrations of paramagnetic materials.  相似文献   

8.
Proton relaxation time measurements were performed on a standard whole body MR imager operating at 1.5 T using a conventional surface coil of the manufacturer. A combined CP/CPMG multiecho, multislice sequence was used for the T1 and T2 relaxation time measurements. Two repetition times of 2000 ms (30 echoes) and 600 ms (2 echoes) with 180 degrees-pulse intervals of 2 tau = 22 ms were interleaved in this sequence. A two-exponential T2 analysis of each pixel of the spin-echo images was computed in a case of an acoustic neurinoma. The two-exponential images show a "short" component (T2S) due to white and gray matter and a "long" component (T2S) due to the cerebrospinal fluid. In the fatty tissue two components with T2S = 35 +/- 3 ms and T2L = 164 +/- 7 ms were measured. Comparing with Gd-DTPA imaging the relaxation time images show a clear differentiation of vital tumor tissue and cerebrospinal fluid.  相似文献   

9.
The (1)H NMR water signal from spectroscopic voxels localized in gray matter contains contributions from tissue and cerebral spinal fluid (CSF). A typically weak CSF signal at short echo times makes separating the tissue and CSF spin-lattice relaxation times (T(1)) difficult, often yielding poor precision in a bi-exponential relaxation model. Simulations show that reducing the variables in the T(1) model by using known signal intensity values significantly improves the precision of the T(1) measurement. The method was validated on studies on eight healthy subjects (four males and four females, mean age 21 +/- 2 years) through a total of twenty-four spectroscopic relaxation studies. Each study included both T(1) and spin-spin relaxation (T(2)) experiments. All volumes were localized along the Sylvian fissure using a stimulated echo localization technique with a mixing time of 10 ms. The T(2) experiment consisted of 16 stimulated echo acquisitions ranging from a minimum echo time (TE) of 20 ms to a maximum of 1000 ms, with a repetition time of 12 s. All T(1) experiments consisted of 16 stimulated echo acquisition, using a homospoil saturation recovery technique with a minimum recovery time of 50 ms and a maximum 12 s. The results of the T(2) measurements provided the signal intensity values used in the bi-exponential T(1) model. The mean T(1) values when the signal intensities were constrained by the T(2) results were 1055.4 ms +/- 7.4% for tissue and 5393.5 ms +/- 59% for CSF. When the signal intensities remained free variables in the model, the mean T(1) values were 1085 ms +/- 19.4% and 5038.8 ms +/- 113.0% for tissue and CSF, respectively. The resulting improvement in precision allows the water tissue T(1) value to be included in the spectroscopic characterization of brain tissue.  相似文献   

10.
This study investigates the effects of developmental stage and muscle type on the mobility and distribution of water within skeletal muscles, using low-field (1)H-NMR transverse relaxation measurements in vitro on four different porcine muscles (M. longissimus dorsi, M. semitendinosus, M. biceps femoris, M. vastus intermedius) from a total of 48 pigs slaughtered at various weight classes between 25 kg and 150 kg. Principal component analysis (PCA) revealed effects of both slaughter weight and muscle type on the transverse relaxation decay. Independent of developmental stage and muscle type, distributed exponential analysis of the NMR T(2) relaxation data imparted the existence of three distinct water populations, T(2b), T(21), and T(22), with relaxation times of approximately 1-10, 45-120, and 200-500 ms, respectively. The most profound change during muscle growth was a shift toward faster relaxation in the intermediate time constant, T(21). It decreased by approx. 24% in all four muscle types during the period from 25 to 150 kg live weight. Determination of dry matter, fat, and protein content in the muscles showed that the changes in relaxation time of the intermediate time constant, T(21), during growth should be ascribed mainly to a change in protein content, as the protein content explained 77% of the variation in the T(21) time constant. Partial least squares (PLS) regression revealed validated correlations in the region of 0.58 to 0.77 between NMR transverse relaxation data and muscle development for all the four muscle types, which indicates that NMR relaxation measurements may be used in the prediction of muscle developmental stage.  相似文献   

11.
The objective of the study was to pinpoint the effect of stress induced rock matrix alterations on NMR-wireline-log measurements by means of laboratory T1 and T2 relaxation time measurements. The research activities were subdivided into two major parts: NMR relaxation measurements on a brine saturated outcrop sandstone (Red Wildmoor Sandstone) during uniaxial compressional tests and NMR relaxation measurements on artificial sandstone samples prepared with defined crack patterns. T1-measurements performed on Red Wildmoor samples during compaction showed a decrease in the mean relaxation rate 1/exp相似文献   

12.
诊断骨质疏松症多采用双能X射线吸收方法测得的骨密度数据作为依据,但是该方法存在一定量的辐射,且准确性不高.该文设计并改进了一套核磁共振装置,通过在发射和接收线圈之间增加快速切换开关(Q-switch),使得核磁共振自旋回波的回波时间缩短至80μs的超短回波时间范围,实现了对T_2弛豫时间很短的骨组织核磁共振自旋回波信号的采集;将T_2弛豫时间谱和双能X射线方法测量的骨密度数据进行了对比研究,发现核磁共振T_2弛豫时间谱上300~500μs之间的峰值与骨密度之间具有良好的线性关系,随着骨密度的增大,相应的T_2弛豫时间峰值缩短;利用核磁共振T_2弛豫时间谱技术,结合双能X射线吸收方法,提出了一种测量生物离体骨骼样本骨密度的方法.该测量方案具有测量速度快、对人体完全无害、跨时期比较性强等优点,很好的弥补了现有测量方法的不足,在骨质疏松症的诊断和疗效评估中有着良好的应用前景.  相似文献   

13.
Nuclear magnetic resonance (NMR) plays a significant role in porous media analysis and petroleum exploration, but its response is significantly influenced by the internal magnetic field gradient in fluid saturated porous medium, which obviously limits the accuracy of rock core analysis and logging interpretation. The influential factors of the internal magnetic field gradient in formation and its influences on NMR response are studied in this paper, based on NMR mechanism through one- and two-dimensional core NMR experiments. The results indicate that the internal magnetic field gradient is positively correlated with the static magnetic field strength and the magnetic susceptibility difference between pore fluid and solid grains, while it presents negative correlation with pore radius. The internal magnetic field gradient produces an additional diffusion relaxation in hydrogen relaxation system and accelerates the attenuation of magnetization vector. As a result, T2 spectrum shifts to the left and NMR porosity and diffusion coefficient of the fluid could be inaccurate. This research sets a foundation for the NMR porosity correction and fluid distribution on T2-G maps based on the internal magnetic field gradient correction.  相似文献   

14.
We use nuclear magnetic resonance (NMR) imaging of C2F6 gas to characterize porosity, mean pore size, and permeability of partially sintered ceramic (Y-TZP Yttria-stabilized tetragonal-zirconia polycrystal) samples. Conventional measurements of these parameters gave porosity values from 0.18 to 0.4, mean pore sizes from 10 nm to 40 nm, and permeability from 4 nm(2) to 25 nm(2). The NMR methods are based on relaxation time measurements (T(1)) and the time dependent diffusion coefficient D(Delta). The relaxation time of C2F6 gas is longer in pores than in bulk gas and it increases as the pore sizes decrease. NMR yielded accurate porosity values after correcting for surface adsorption effects. A model for T(1) dependence on pore size that accounts for collisions between gas molecules and walls as well as surface adsorption effects is proposed. The model fits the experimental data well. Finally, the long time limit of D(Delta)/D(o), where D(o) is the bulk gas diffusion coefficient is useful for measuring tortuosity, while the short time limit was not achieved experimentally and could not be used for calculating surface-area to volume (S/V) ratios.  相似文献   

15.
Analysis of NMR relaxation data has provided significant insight on molecular dynamic, leading to a more comprehensive understanding of macromolecular functions. However, traditional methodology allows relaxation measurements performed only at a few fixed high fields, thus severely restricting their potential for extracting more complete dynamic information. Here we report the design and performance of a compact high-speed servo-mechanical shuttle assembly adapted to a commercial 600 MHz high-field superconducting magnet. The assembly is capable of shuttling the sample in a regular NMR tube from the center of the magnet to the top (fringe field ~0.01 T) in 100 ms with no loss of sensitivity other than that due to intrinsic relaxation. The shuttle device can be installed by a single experienced user in 30 min. Excellent 2D-(15)N-HSQC spectra of (u-(13)C, (15)N)-ubiquitin with relaxation at low fields (3.77 T) and detection at 14.1T were obtained to illustrate its utility in R(1) measurements of macromolecules at low fields. Field-dependent (13)C-R(1) data of (3,3,3-d)-alanine at various field strengths were determined and analyzed to assess CSA and (1)H-(13)C dipolar contributions to the carboxyl (13)C-R(1).  相似文献   

16.
Two-dimensional correlation relaxation studies of cement pastes   总被引:2,自引:0,他引:2  
Two-dimensional nuclear magnetic resonance relaxation correlation studies of cement pastes have been performed on a unilateral magnet, the Surface GARField. Through these measurements, the hydration process can be observed by monitoring the evolution of porosity. Characteristic relaxation time distributions have been observed in different cement pastes: fresh white cement, prehydrated white cement and ordinary Portland cement. The observed T(1)/T(2) ratio in these cements has been shown to agree with expectations based on high field values.  相似文献   

17.
Earth??s field nuclear magnetic resonance (NMR) can be used for non-destructive in-bottle liquid screening by evaluating the spin?Clattice relaxation times of protons in various liquids. An Earth??s field NMR apparatus has been developed and optimized to measure the spin?Clattice relaxation times of various liquids contained in 500?ml PET bottles. Two methods to generate 90-degree readout pulses using transient oscillating signals generated in a resonator are reported. The lower detection limit of pure water was 1?ml. The minimum measurable spin?Clattice relaxation time was 50?ms.  相似文献   

18.
This study investigates the effects of developmental stage and muscle type on the mobility and distribution of water within skeletal muscles, using low-field 1H-NMR transverse relaxation measurements in vitro on four different porcine muscles (M. longissimus dorsi, M. semitendinosus, M. biceps femoris, M. vastus intermedius) from a total of 48 pigs slaughtered at various weight classes between 25 kg and 150 kg. Principal component analysis (PCA) revealed effects of both slaughter weight and muscle type on the transverse relaxation decay. Independent of developmental stage and muscle type, distributed exponential analysis of the NMR T2 relaxation data imparted the existence of three distinct water populations, T2b, T21, and T22, with relaxation times of approximately 1–10, 45–120, and 200–500 ms, respectively. The most profound change during muscle growth was a shift toward faster relaxation in the intermediate time constant, T21. It decreased by approx. 24% in all four muscle types during the period from 25 to 150 kg live weight. Determination of dry matter, fat, and protein content in the muscles showed that the changes in relaxation time of the intermediate time constant, T21, during growth should be ascribed mainly to a change in protein content, as the protein content explained 77% of the variation in the T21 time constant. Partial least squares (PLS) regression revealed validated correlations in the region of 0.58 to 0.77 between NMR transverse relaxation data and muscle development for all the four muscle types, which indicates that NMR relaxation measurements may be used in the prediction of muscle developmental stage.  相似文献   

19.
Effects of addition of three standard clay minerals, Na-montmorillonite, illite and kaolinite, on Portland cement hydration properties were studied. The1H spin-lattice relaxation of exchangeable water was monitored during hydration time and the data were processed by spin-grouping analysis. The values and evolution dynamics of both resolvedT 1 components and corresponding magnetization fractions show that each day mineral lowers the fluidity of Portland cement paste and accelerates its hydration in dormant. In advanced stages of hydration, the Na-montmorillonite provides the accelerating influence, while the kaolinite exhibits the retarding effect. The final values of gel pores to capillaries percentage fractions ratio indicate a slightly lower porosity of samples with Namontmorillonite and a higher porosity of pastes with the same percentage of illite or kaolinite, regarding to the pure hardened Portland cement.  相似文献   

20.
Macromolecules contribute broad "background" resonances to the (1)H NMR brain spectra at short echo times. The application of long echo times is the most widely used method for removing these resonances. Here, it is demonstrated that these background resonances may be suppressed at short echo times using multiple inversion recovery (MIR). In the technique presented, the MIR sequence consists of four adiabatic inversion pulses, applied preparatory to a 20-ms echo time stimulated echo localization sequence. The inversion times (359, 157, 69, and 20 ms) were selected to preferentially suppress macromolecules with longitudinal relaxation times between 38 and 300 ms. While the resulting spectra have lower overall signal-to-noise, baseline contributions from macromolecules are greatly reduced. Unlike the typical long TE acquisitions, the short TE MIR acquisition preserves the myo-inositol resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号