首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the gravitational perturbations in Einstein aether black hole spacetime and find that the quasinormal modes(QNMs) of the first kind of aether black hole are similar to that of a Lorentz violation(LV) model,the quantum electrodynamics(QED) extension limit of standard model extension. These similarities between completely different backgrounds may imply that LV in the gravity sector and LV in the matter sector have some connections: damping QNMs more rapidly and prolonging its oscillation period. Compared to the Schwarzschild case, the first kind of black holes have larger damping rates and the second ones have lower damping rates, and they all have smaller real oscillation frequency. These differences could be detected by the new generation of gravitational antennas.  相似文献   

2.
In a seminal paper, Alcubierre showed that Einstein’s theory of general relativity appears to allow a super-luminal motion. In the present study, we use a recent eternal-warp-drive solution found by Alcubierre to study the effect of Hawking radiation upon an observer located within the warp drive in the framework of the quantum tunneling method. We find the same expression for the Hawking temperatures associated with the tunneling of both massive vector and scalar particles, and show this expression to be proportional to the velocity of the warp drive. On the other hand, since the discovery of gravitational waves, the quasinormal modes (QNMs) of black holes have also been extensively studied. With this purpose in mind, we perform a QNM analysis of massive scalar field perturbations in the background of the eternal-Alcubierre-warp-drive spacetime. Our analytical analysis shows that massive scalar perturbations lead to stable QNMs.  相似文献   

3.
The massless scalar quasinormal modes (QNMs) of a stationary axisymmetric Einstein--Maxwell dilaton--axion (EMDA) black hole are calculated numerically using the continued fraction method first proposed by Leaver. The fundamental quasinormal frequencies (slowly damped QNMs) are obtained and the peculiar behaviours of them are studied. It is shown that these frequencies depend on the dilaton parameter $D$, the rotational parameter $a$, the multiple moment $l$ and the azimuthal number $m$, and have the same values with other authors at the Schwarzschild and Kerr limit.  相似文献   

4.
The quasinormal modes(QNMs) of massless scalar field perturbation in a noncommutative-geometry-inspired Schwarzschild black hole spacetime are studied using the third-order Wentzel-Kramers-Brillouin approximative approach. The result shows that the noncommutative parameter plays an important role for the quasinormal(QNM) frequencies.  相似文献   

5.
马洪  李瑾 《中国物理 B》2017,26(6):60401-060401
In this paper, we study the gravitational quasi-normal modes(QNMs) for a static R~2 black hole(BH) in Anti-de Sitter(AdS) spacetime. The corresponding master equation of odd parity is derived and the QNMs are evaluated by the Horowitz and Hubeny method. Meanwhile the stability of such BH is also discussed through the temporal evolution of the perturbation field. Here we mainly consider the coefficient λ, which is related to the radius of AdS black hole, on the QNMs of the R~2 AdS BH. The results show that the Re(ω) and |Im(ω)| of the QNMs increase together as |λ| increases for a given angular momentum number l. That indicates with a larger value of |λ| the corresponding R~2 AdS BH returns to stable much more quickly. The dynamic evolution of the perturbation field is consistent with the results derived by the Horowitz and Hubeny method. Since in the conformal field theory the QNMs can reflect its approach to equilibrium, so our related results could be referential to studies of the AdS/CFT conjecture. The relationship between λ and the properties of the static R~2 BH might be helpful for the development of R~2 gravitational theory.  相似文献   

6.
The quasinormal modes of the Schwarzschild black hole surrounded by the quintessence in Rastall gravity are studied using the sixth-order Wentzel-Kramers-Brillouin approximative approach. The effect of the Rastall parameter on the quasinormal modes of gravitational, electromagnetic and massless scalar perturbations is explored. Compared to the case of Einstein gravity, it is found that, when η < 0, the gravitational field, electromagnetic field as well as massless scalar field damp more rapidly and have larger real frequency of oscillation in Rastall gravity, while when η > 0, the gravitational field, electromagnetic field as well as massless scalar field damp more slowly and have smaller real frequency of oscillation in Rastall gravity. It is also found that the gravitational field, electromagnetic field as well as massless scalar field damp more and more slowly and the real frequency of oscillation for the gravitational perturbation, electromagnetic perturbation as well as massless scalar perturbation becomes smaller and smaller as the Rastall parameter η increases. Compared among the quasinormal frequencies of gravitational, electromagnetic and massless scalar perturbations, I find that, for fixed η, (l, n), ∈ and Nq, the oscillation damps most slowly for the gravitational perturbation, mediate for the electromagnetic perturbation and most rapidly for the massless scalar perturbation, and the real frequency of oscillation is the smallest for the gravitational perturbation, mediate for the electromagnetic perturbation and the largest for the massless scalar perturbation in Rastall gravity.  相似文献   

7.
荆继良  陈松柏 《中国物理》2005,14(4):683-689
利用P?shl-Teller势近似方法,本文研究了径向和角向引力扰动引起的Reissner-Nordstr?m de Sitte 黑洞的似正模。研究表明,当宇宙常数增加时似正模虚部的强度变小,但它却随电荷、谐波数或轨道角动量增加而增加。当电荷固定而宇宙常数改变时,似正模的虚部与实部几乎成线性关系。研究还发现径向和角向引力扰动引起的似正模是一致的,这证实似正模只依赖于黑洞的参量而与初始扰动无关。  相似文献   

8.
We investigate gravitational perturbations on a regular black hole described by the Bardeen solution. Bardeen’s black hole is a solution of Einstein’s equations with no singularity at the origin of the radially symmetric system. Notwithstanding this regularity, the Bardeen solution still has event horizons dependent on its characteristic parameters. When a black hole is perturbed, it oscillates and gives rise to damped vibrational modes known as quasinormal modes. Here, we compute the quasinormal frequencies of a regular black hole to third order in the WKB approximation for gravitational perturbations.  相似文献   

9.
In this paper, the quasinormal modes (QNMs) of electromagnetic field perturbation to asymptotic safe (AS) black hole are discussed. Through six-order WKB approach we investigate the effects of quantum correction to the quasinormal modes (QNMs) numerically. Meanwhile by means of finite difference method, the evolutions of such perturbation to the safe black hole are figured out with corresponding parameters. It is found that the stability of black hole remains although the decay frequency and damping speed of oscillations are respectively increased and lowered by the quantum correction to classic Schwarzschild black hole.  相似文献   

10.
Modifying a method by Horowitz and Hubeny for asymptotically anti-de Sitter black holes, we establish the classical stability of the quasinormal modes of the de Sitter spacetime. Furthermore using a straightforward method we calculate the de Sitter quasinormal frequencies of the gravitational perturbations and discuss some properties of the radial functions of these quasinormal modes.  相似文献   

11.
Using conformal coordinates associated with conformal relativity—associated with de Sitter spacetime homeomorphic projection into Minkowski spacetime—we obtain a conformal Klein-Gordon partial differential equation, which is intimately related to the production of quasi-normal modes (QNMs) oscillations, in the context of electromagnetic and/or gravitational perturbations around, e.g., black holes. While QNMs arise as the solution of a wave-like equation with a Pöschl-Teller potential, here we deduce and analytically solve a conformal ‘radial’ d’Alembert-like equation, from which we derive QNMs formal solutions, in a proposed alternative to more completely describe QNMs. As a by-product we show that this ‘radial’ equation can be identified with a Schrödinger-like equation in which the potential is exactly the second Pöschl-Teller potential, and it can shed some new light on the investigations concerning QNMs.  相似文献   

12.
Using the WKB method and HYBRD program, we evaluate the low-lying massive charged scalar and Dirac field quasinormal modes (QNMs) of a Reissner-Nordström black hole. We discuss the real and imaginary parts of QNMs vary with the charge of black hole, the masses and charges of scalar and Dirac fields.  相似文献   

13.
We study the quasinormal modes(QNMs) of a Schwarzschild black hole immersed in an electromagnetic(EM) universe. The immersed Schwarzschild black hole(ISBH) originates from the metric of colliding EM waves with double polarization [Class. Quantum Grav. 12, 3013(1995)]. The perturbation equations of the scalar fields for the ISBH geometry are written in the form of separable equations. We show that these equations can be transformed to the confluent Heun's equations, for which we are able to use known techniques to perform analytical quasinormal(QNM) analysis of the solutions. Furthermore, we employ numerical methods(Mashhoon and 6~(th)-order Wentzel-Kramers-Brillouin(WKB)) to derive the QNMs. The results obtained are discussed and depicted with the appropriate plots.  相似文献   

14.
We research gravitational perturbation of Garfinkle-Horowitz-Strominger dilaton black hole and its quasinormal modes by using WKB approach proposed by Schutz, Will, Iyer and Konoplya. The quasinormal frequency with different angular momentum l is calculated in this paper. Our results show that, as the charge parameter b increase, both the real part and the absolute value of imaginary part of quasinormal frequency also increase, which means that the effect of charge in Garfinkle-Horowitz-Strominger dilaton background spacetime lead to higher frequency gravitational wave and the quasinormal modes damp at a rapider rate.  相似文献   

15.
Abhas Mitra 《Pramana》2009,73(3):615-622
One of the outstanding puzzles of theoretical physics is whether quantum information indeed gets lost in the case of black hole (BH) evaporation or accretion. Let us recall that quantum mechanics (QM) demands an upper limit on the acceleration of a test particle. On the other hand, it is pointed out here that, if a Schwarzschild BH exists, the acceleration of the test particle would blow up at the event horizon in violation of QM. Thus the concept of an exact BH is in contradiction with QM and quantum gravity (QG). It is also reminded that the mass of a BH actually appears as an integration constant of Einstein equations. And it has been shown that the value of this integration constant is actually zero! Thus even classically, there cannot be finite mass BHs though zero mass BH is allowed. It has been further shown that during continued gravitational collapse, radiation emanating from the contracting object gets trapped within it by the runaway gravitational field. As a consequence, the contracting body attains a quasi-static state where outward trapped radiation pressure gets balanced by inward gravitational pull and the ideal classical BH state is never formed in a finite proper time. In other words, continued gravitational collapse results in an ‘eternally collapsing object’ which is a ball of hot plasma and which is asymptotically approaching the true BH state with M = 0 after radiating away its entire mass energy. And if we include QM, this contraction must halt at a radius suggested by the highest QM acceleration. In any case no event horizon (EH) is ever formed and in reality, there is no quantum information paradox.  相似文献   

16.
We obtain the quasinormal modes for tensor perturbations of Gauss–Bonnet (GB) black holes in d = 5, 7, 8 dimensions and vector perturbations in d = 5, 6, 7 and 8 dimensions using third order WKB formalism. The tensor perturbation for black holes in d = 6 is not considered because of the fact that the black hole is unstable to tensor mode perturbations. In the case of uncharged GB black hole, for both tensor and vector perturbations, the real part of the QN frequency increases as the Gauss–Bonnet coupling (α′) increases. The imaginary part first decreases upto a certain value of α′ and then increases with α′ for both tensor and vector perturbations. For larger values of α′, the QN frequencies for vector perturbation differs slightly from the QN frequencies for tensorial one. It has also been shown that as α′ → 0, the quasinormal frequencies for tensor and vector perturbations of the Schwarzschild black hole can be obtained. We have also calculated the quasinormal spectrum of the charged GB black hole for tensor perturbations. Here we have found that the real oscillation frequency increases, while the imaginary part of the frequency falls with the increase of the charge. We also show that the quasinormal frequencies for scalar field perturbations and the tensor gravitational perturbations do not match as was claimed in the literature. The difference in the result increases if we increase the GB coupling.  相似文献   

17.
Hong Ma  Jin Li 《中国物理C(英文版)》2020,44(9):095102-095102-11
Quasinormal modes (QNMs) for massless and massive Dirac perturbations of Born-Infeld black holes (BHs) in higher dimensions are investigated. Solving the corresponding master equation in accordance with hypergeometric functions and the QNMs are evaluated. We discuss the relationships between QNM frequencies and spacetime dimensions. Meanwhile, we also discuss the stability of the Born-Infeld BH by calculating the temporal evolution of the perturbation field. Both the perturbation frequencies and the decay rate increase with increasing dimension of spacetime n. This shows that the Born-Infeld BHs become more and more unstable at higher dimensions. Furthermore, the traditional finite difference method is improved, so that it can be used to calculate the massive Dirac field. We also elucidate the dynamic evolution of Born-Infeld BHs in a massive Dirac field. Because the number of extra dimensions is related to the string scale, there is a relationship between the spacetime dimension n and the properties of Born-Infeld BHs that might be advantageous for the development of extra-dimensional brane worlds and string theory.  相似文献   

18.
邹德成  吴超  张明  岳瑞宏 《中国物理C(英文版)》2020,44(5):055102-055102-9
We study quasinormal modes(QNMs)of charged black holes in the Einstein-Maxwell-Weyl(EMW)gravity by adopting the test scalar field perturbation.We find that the imaginary part of QNM frequencies is consistently negative for different angular parameters l,indicating that these modes always decay and are therefore stable.We do not observe a linear relationship between the QNM frequencyωand parameter p for these black holes,as their charge Q causes a nonlinear effect.We evaluate the massive scalar field perturbation in charged black holes and find that random long lived modes(i.e.,quasiresonances)could exist in this spectrum.  相似文献   

19.
We study the evolution of massive scalar field in the spacetime geometry of Kehagias-Sfetsos black hole in deformed Hořava-Lifshitz (HL) gravity by numerical analysis. We find that the signature of HL theory is encoded in the quasinormal mode (QNM) phase of the evolution of field. The QNM phase in the evolution process lasts for a longer time in HL theory. QNMs involved in the evolution of massive field are calculated and find that they have a higher oscillation frequency and a lower damping rate than the Schwarzschild spacetime case. We also study the relaxation of field in the intermediate and asymptotic range and verified that behaviors of field in these phases are independent of the HL parameter and is identical to the Schwarzschild case.  相似文献   

20.
We study the propagation of a probe massless nonminimally coupled scalar field in a fixed gravitational background of a cloud of strings in (2 + 1) dimensions. We obtain exact analytical expressions for the reflection coefficient, the absorption cross section, the decay rate as well as the quasinormal frequencies. The impact of the nonminimal coupling is investigated in detail. Our results show that universality is not respected in general, and that scalar perturbations are stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号