首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学   1篇
数学   2篇
物理学   13篇
  2024年   1篇
  2023年   2篇
  2020年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2013年   1篇
  2008年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Quantum gravity has exciting peculiarities on the Planck scale.The effect of generalized uncertainty principle (GUP) to the entangled scalar/fermion particles’ tunneling from a Schwarzschild black hole immersed in an electromagnetic Universe is investigated by the help of semi-classical tunneling method. The quantum corrected Hawking temperature of this black hole with an external parameter “a” modifies the Hawking temperature for the entangled particles.  相似文献   
2.
In a seminal paper, Alcubierre showed that Einstein’s theory of general relativity appears to allow a super-luminal motion. In the present study, we use a recent eternal-warp-drive solution found by Alcubierre to study the effect of Hawking radiation upon an observer located within the warp drive in the framework of the quantum tunneling method. We find the same expression for the Hawking temperatures associated with the tunneling of both massive vector and scalar particles, and show this expression to be proportional to the velocity of the warp drive. On the other hand, since the discovery of gravitational waves, the quasinormal modes (QNMs) of black holes have also been extensively studied. With this purpose in mind, we perform a QNM analysis of massive scalar field perturbations in the background of the eternal-Alcubierre-warp-drive spacetime. Our analytical analysis shows that massive scalar perturbations lead to stable QNMs.  相似文献   
3.
In the present paper we explore the Hawking radiation as a quantum tunneling effect from a rotating 5 dimensional Myers-Perry black hole (5D-MPBH) with two independent angular momentum components. First, we investigate the Hawking temperature by considering the tunneling of massive scalar particles and spin-1 vector particles from the 5D-MPBH in the Painlevé coordinates and then in the corotating frames. More specifically, we solve the Klein-Gordon and Proca equations by applying the WKB method and Hamilton-Jacobi equation in both cases. Finally, we recover the Hawking temperature and show that coordinates systems do not affect the Hawking temperature.  相似文献   
4.
Four spherically symmetric but non-asymptotically flat black hole solutions surrounded with spherical dark matter distribution perceived under the minimal length scale effect is derived via the generalized uncertainty principle. Here, the effect of this quantum correction, described by the parameter γ $\gamma$ , is considered on a toy model galaxy with dark matter and the three well-known dark matter distributions: the cold dark matter, scalar field dark matter, and the universal rotation curve. The aim is to find constraints to γ $\gamma$ by applying these solutions to the known supermassive black holes: Sagittarius A (Sgr. A*) and Messier 87* (M87*), in conjunction with the available Event Horizon telescope. The effect of γ $\gamma$ is then examined on the event horizon, photonsphere, and shadow radii, where unique deviations from the Schwarzschild case are observed. As for the shadow radii, bounds are obtained for the values of γ $\gamma$ on each black hole solution at 3 σ $3\sigma$ confidence level. The results revealed that under minimal length scale effect, black holes can give positive (larger shadow) and negative values (smaller shadow) of γ $\gamma$ , which are supported indirectly by laboratory experiments and astrophysical or cosmological observations, respectively.  相似文献   
5.
Non-linear electrodynamics (NLED) is a generalization of Maxwell's electrodynamics for strong fields. It has significant implications for the study of black holes and cosmology and has been extensively studied in the literature, extending from quantum to cosmological contexts. In this work, two new ways to investigate these non-linear theories are investigated. First, the Blandford-Znajek mechanism is analyzed in light of this promising theoretical context, providing the general form of the extracted power up to second order in the black hole spin parameter a. It is found that, depending on the NLED model, the emitted power can be extremely increased or decreased, and that the magnetic field lines around the black hole seem to become vertical quickly. Considering only separated solutions, it is found that no monopole solutions exist and this could have interesting astrophysical consequences (not considered here). Last but not least, it is attempted to confine the NLED parameters by inducing the amplification of primordial magnetic fields (“seeds”), thus admitting non-linear theories already during the early stages of the Universe. However, the latter approach proves to be useful for NLED research only in certain models. These (analytical) results emphasize that the behavior of non-linear electromagnetic phenomena strongly depends on the physical context and that only a power-law model seems to have any chance to compete with Maxwell.  相似文献   
6.
In this study, the gravitational deflection angle of photons in the weak field limit (or the weak deflection angle) and shadow cast by the electrically charged and spherically symmetric static Kiselev black hole (BH) in the string cloud background are investigated. The influences of the BH charge Q, quintessence parameter γ, and string cloud parameter a on the weak deflection angle are studied using the Gauss-Bonnet theorem, in addition to studying the influences on the radius of photon spheres and size of the BH shadow in the spacetime geometry of the charged-Kiselev BH in string clouds. Moreover, we study the effects of plasma (uniform and non-uniform) on the weak deflection angle and shadow cast by the charged-Kiselev BH surrounded by the clouds of strings. In the presence of a uniform/nonuniform plasma medium, an increase in the string cloud parameter a increases the deflection angle α. In contrast, a decrease in the BH charge Q decreases the deflection angle. Further, we observe that an increase in the BH charge Q causes a decrease in the size of the shadow of the BH. We notice that, with an increase in the values of the parameters γ and a, the size of the BH shadow increases, and therefore, the intensity of the gravitational field around the charged-Kiselev BH in string clouds increases. Thus, the gravitational field of the charged-Kiselev BH in the string cloud background is stronger than the field produced by the pure Reissner-Nordstrom BH. Moreover, we use the data released by the Event Horizon Telescope (EHT) collaboration, for the supermassive BHs M87* and Sgr A*, to obtain constraints on the values of the parameters γ and a.  相似文献   
7.
8.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water.  相似文献   
9.
In this paper, we give a generalization of the Baskakov-Kantorovich type operators that reproduce functions e0 and ex. We discuss uniform convergence of this generalization by means of the modulus of continuity and establish quantitive asymptotic formula.  相似文献   
10.
Chargeless massive scalar fields are studied in the spacetime of Born–Infeld dilaton black holes (BIDBHs). We first separate the massive covariant Klein–Gordon equation into radial and angular parts and obtain the exact solution of the radial equation in terms of the confluent Heun functions. Using the obtained radial solution, we show how one gets the exact quasinormal modes for some particular cases. We also solve the Klein–Gordon equation solution in the spacetime of a BIDBHs with a cosmic string in which we point out the effect of the conical deficit on the BIDBHs. The analytical solutions of the radial and angular parts are obtained in terms of the confluent Heun functions. Finally, we study the quantization of the BIDBH. While doing this, we also discuss the Hawking radiation in terms of the effective temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号