首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
The structure, composition, and temperature coefficient of resistance of tantalum films sputtered in Ar–O2 mixture were studied as a function of deposition parameters and substrates temperature. As the sputtering power increased from 25 to 100 W, the samples deposited at 300 °C only consisted of the β phase, the preferred-growth orientation of films changed from (2 0 0) to (2 0 2) and the temperature coefficient of resistance reduced from −289.8 to −116.7 ppm/°C. The decrease of the oxygen and other impurity in the films was observed as the increase of the sputtering power. In addition, the O/Ta ratio decrease and grain size reduction in the films related to a change of electrical resistivity were observed at substrate temperatures in the range of 300–500 °C. These results suggested that the electrical properties were due to the oxygen and other impurity content and grain size in the films rather than to growth orientation. At 650 °C, the deposited films contained both partial stable body-centered-cubic α phase with low resistivity and tetragonal β phase of Ta. The presence of α phase of Ta causes a sharp decrease of the electrical resistivity and a significant change in the microstructure of the samples.  相似文献   

3.
Tantalum (Ta) and nitrogen-contained tantalum (Ta–N) thin films are sputter deposited on Si-based substrates with and without a titanium adhesion layer. The impact of varying the nitrogen flow rate and the underlying titanium on the phase formation process is investigated using X-ray diffraction analysis, resistivity measurement and scanning electron microscopy. Our results indicate that the titanium layer inhibits the formation of high-resistivity tetragonal β-Ta, and leads to the deposition of low-resistivity cubic α-Ta arising from its epitaxial orientation on the underlying titanium. Consequently, the electrical properties and microstructures of the Ta-based films are significantly changed.  相似文献   

4.
Thin carbon films are deposited on a silicon substrate at room temperatures via the biased pulsed magnetron sputtering of graphite in the physical (Ar, Kr, Xe) and reactive (Ar: CH4) modes at a different sputtering power density varying from 40 to 550 W/cm2. To ensure ion-assistance, negative bias of the substrate is set during film deposition by means of both DC and pulsed power sources. Some deposition parameters lead to a high hardness of the films (12.5 GPa), optical transparency, a surface resistance of RS > 109 Ω/h, and developed nanomorphology of the sample surface which bears visible inclusions with a lateral size of 35 nm. Some of the films are annealed after deposition with a C+-ion beam with an energy of 20 keV. A correlation between the parameters of magnetron deposition and ion-beam modification and the examined characteristics of the films is found. Different R S values in a wide range can be achieved by means of simple adjustment of the parameters and modes during magnetron sputtering and ion-beam modification.  相似文献   

5.
刘峰  孟月东  任兆杏  舒兴胜 《物理学报》2008,57(3):1796-1801
利用感应耦合等离子体(ICP)增强射频磁控溅射技术在Si(111)片和M2钢表面制备了ZrN薄膜,研究了基片的温度和ICP功率对ZrN薄膜的结构以及性能影响.研究发现:在基片温度≤300℃沉积的ZrN薄膜择优取向为(111);基片温度达到450℃时薄膜出现ZrN(200)衍射峰,ZrN(111)晶面的织构系数明显降低.传统磁控溅射沉积薄膜为柱状结构,当ICP为200 W,基片温度为300℃时沉积薄膜中柱状晶体消失;随着基片温度的升高,N/Zr元素比例降低,并且薄膜的电阻率下降;相对于传统溅射,ICP增强射 关键词: 感应耦合等离子体 磁控溅射 ZrN 微结构  相似文献   

6.
Zinc oxide(ZnO) is one of the most promising and frequently used semiconductor materials.In-doped nanostructure ZnO thin 61 ms are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique.The effect of In-doping on structural,morphological and electrical properties is studied.The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature.The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases.The presenting Zn,O and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power.The surface topographies of the grown thin films are examined with the atomic force microscope technique.The obtained results reveal that the grown Elm roughness increases with the In power.The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are anaiyzed.  相似文献   

7.
Sulphides of tungsten with its lamellar structure - whereby weak van der Waals forces act between the layers - are commonly believed to be responsible for their excellent self-lubricating properties. The present investigation is undertaken in order to explore the possibility of using this film for MEMS application. In order to achieve this objective, W-S-C films are deposited on 100Cr6 steel using radio frequency magnetron sputtering. Carbon was incorporated in the films via three different ways: (1) using a reactive gas (CH4), (2) by co-sputtering from separate targets (WS2 and C targets) and, (3) by co-sputtering from a C target embedded with WS2 pellets. Microstructural features and mechanical properties of these films are evaluated with the help of scanning electron microscopy and nanoindentation. The topography, structural features and scratch behaviour are analysed using atomic force microscopy, X-ray diffraction and nanoindenter. It is noted that the film deposited by sputtering two targets exhibits the highest hardness due to high oxygen content. The highest elastic modulus pertains to the film deposited from the carbon target containing WS2 pellets as this film has amorphous structure and the minimum porosity. The friction coefficient under scratching is the highest for reactively sputtered film whereas it is the minimum for the film deposited from the carbon target containing WS2 pellets as this film has amorphous structure and the minimum roughness.  相似文献   

8.
The structure, as well as the phase and elemental compositions, of tantalum diboride-based nanostructured films deposited by rf magnetron sputtering under various conditions are studied by X-ray diffraction, electron microscopy, and secondary ion mass spectrometry. The physicomechanical properties of the films (hardness, as well as elastic and plastic properties) are determined. The maximum hardness and elastic modulus of the synthesized films are 42 are 240 GPa, respectively. The grain size is found to influence the physicomechanical and electrical properties of the films.  相似文献   

9.
采用磁控溅射技术,以碳氢气体和氩气为工作气体,在Ge基底上制备了GeC薄膜。研究了靶压对薄膜折射率的影响,发现在较高的靶压下制备的GeC薄膜具有较低的折射率,而在较低的靶压下则得到了高折射率的薄膜。通过控制溅射靶压,制备了折射率在2.5~3.8之间可变的GeC薄膜。利用拉曼光谱研究了GeC薄膜的结构。薄膜样品的硬度测试表明,较低折射率的GeC薄膜具有较高的硬度。  相似文献   

10.
Pure W and W-Cu-W trilayer coatings were deposited on an Fe substrate by d.c. magnetron sputtering. The α-β phase evolution, intragranular stress evolution in sputter-deposited W layer were investigated by x-ray diffraction. They are directly related to the film microstructure, density and adhesion. Therefore, control of the film stress and phase component transition is essential for its applications. The phase component transition from β-W to α-W and intragranular stress evolution from tensile to compressive strongly depend on the deposition parameters and can be induced by lowering Ar pressure and rising target power. The compressively stressed films with α-W phase have a dense microstructure and high adhesion to Fe substrate.  相似文献   

11.
Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.  相似文献   

12.
N-doped TiO2 thin films have been deposited on unheated glass substrates by an inductively coupled plasma (ICP) assisted direct current (dc) reactive magnetron sputtering. All films were produced in the metallic mode of sputtering in order to achieve a high deposition rate. The structures and properties of the N-doped TiO2 films were studied by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and UV–Vis spectrophotometer. Experimental results show that we can obtain well crystallized N-doped anatase phase TiO2 thin films at low deposition temperature and at high deposition rate by using the ICP assisted dc reactive magnetron sputtering process. The doping of nitrogen into TiO2 lattices leads to a smooth shift of the absorption band toward visible light regions.  相似文献   

13.
李新连  吴平  邱宏  陈森  宋斌斌 《物理学报》2011,60(3):36805-036805
用中频脉冲反应磁控溅射法,在溅射功率为78 W,93 W和124 W以及衬底温度分别为室温,500 ℃及677 ℃下制备了氧化铒涂层.采用原子力显微镜、纳米压痕、X射线衍射和掠入射X射线衍射法研究了涂层的形貌、力学性能及物相结构.测量了涂层的电学性能.结果显示,脉冲磁控溅射沉积氧化铒涂层具有较高的沉积速率.实验制备得到了单斜相结构的氧化铒涂层.提高溅射功率时,沉积速率从28 nm/min增大至68 nm/min,涂层的结晶质量显著下降.提高衬底温度至500 ℃和677 ℃时,单斜相衍射峰强度下降.分析认为 关键词: 氧化铒 脉冲磁控溅射 单斜晶相  相似文献   

14.
Tantalum nitride films (TaN) were synthesized by microwave ECR-DC sputtering. The effects of deposition and annealing temperature on mechanical properties of TaN films were investigated. Cross-section pattern, microstructure and binding energy of the films were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Mechanical properties were evaluated using nano-indentation and scratch tester. The results showed that the maximal hardness value of approximately 40 GPa was deposited in the TaN sample at 573 K. While the preparation temperature decreased, the hardness, modulus and adhesion of TaN film also decreased. Hardness and modulus also decreased with the increase in annealing temperature. Meanwhile the adhesion strength was also sensitive to the annealing temperature, with a maximum adhesion strength of 40 N measured in the TaN film annealed at 448 K. The results demonstrated that a desirable mechanical property of TaN films deposited by DC reactive magnetron sputtering can be obtained by controlling the deposition and annealing temperature.  相似文献   

15.
玉米蛋白质基底上射频磁控溅射法制备ZnO薄膜   总被引:2,自引:2,他引:0       下载免费PDF全文
采用射频磁控溅射方法在蛋白质基底上成功地制备了ZnO薄膜,研究了不同靶基距、氩氧比和溅射功率条件对ZnO薄膜性质的影响。结果表明,较小的靶基距有助于ZnO薄膜的c轴择优取向生长。我们还发现,沉积于玉米蛋白质基底的ZnO薄膜存在不同程度的张应力,当Ar/(Ar+O2)为0.7时,ZnO薄膜内的张应力最小。ZnO近带边发光峰有不同程度的红移,我们认为,这是由于晶界势垒和氧空位Vo造成的。随着溅射功率的增大,薄膜生长速率显著加快,晶粒尺寸增大,ZnO的近带边发光峰位逐渐趋向于理论值。  相似文献   

16.
The combination of transparent conductive oxides with high-barrier films deposited onto flexible polymeric substrates is of considerable importance in order to improve the efficiency, lifetime and stability of flexible electronic devices. In this work, ZnO thin films have been deposited onto high-barrier hybrid/PET flexible substrates by pulsed DC magnetron sputtering, at room temperature and by applying different power values on the target. The employment of in situ and real-time Vis–fUV (1.5–6.5 eV) spectroscopic ellipsometry allowed the investigation of the growth mechanisms of ZnO thin films as well as the modification procedure in the hybrid's surface. Island growth is dominant during the initial stages of deposition concerning low target power regime, whereas layer-by-layer deposition prevails at the high target power regime. The hybrid's modified layer of ~10 nm was confirmed by the transmission electron microscopy measurements which additionally revealed a columnar structure of the film with a nanocrystalline morphology. The estimated size of the nanocrystals (~15 nm and above) was compatible with atomic force microscopy (AFM) measurements. Finally, the evolution of the optical parameters (energy gap and absorption peaks) of the ZnO films during the deposition was similar.  相似文献   

17.
射频磁控溅射制备氧化钒薄膜的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
马卫红  蔡长龙 《应用光学》2012,33(1):159-163
氧化钒(VOx)薄膜是一种广泛应用于红外热成像探测的薄膜材料,研究VOx薄膜的制备工艺、获取高电阻温度系数(TCR)的VOx薄膜具有重要意义。以高纯金属钒作靶材,采用射频磁控溅射的方法在室温下制备了VOx薄膜。主要研究了氩氧流量比以及功率等工艺参数对薄膜TCR的影响,获得了较好的工艺参数。采用万用表和X射线光电子能谱仪(XPS)分别测试了不同条件下射频磁控溅射法制备的VOx薄膜的电阻特性和薄膜成分,测试结果表明,采用所获得的较好工艺参数制备的VOx薄膜TCR值大于1.8%。  相似文献   

18.
Amorphous hydrogenated carbon (a-C:H) films were deposited by magnetron sputtering with a mixture gas of Ar and CH4. The a-C:H films deposited by this method have relatively low internal stress (<1 GPa) compared to some films deposited by conventional deposition process. The effects of substrate bias voltage on microstructure, surface morphology and mechanical properties of the films were investigated by various techniques. It has been found that the polymer-like structure is dominated at low bias voltage (−100 V), while the diamond-like structure with the highest hardness and internal stress is the main feature of the a-C:H films deposited under high bias voltage (−300 V). With increasing the bias voltage further, the feature of diamond-like structure decreases associating with the increase of graphitization. The frictional test shows that the friction coefficient and wear rate of the a-C:H films are depended strongly on structure and mechanical properties, which were ultimately influenced by the deposition method and bias voltage.  相似文献   

19.
Amorphous carbon films with high sp2 concentrations are deposited by unbalanced magnetron sputtering with a narrow range of substrate bias voltage. Field emission scanning electron microscopes (FESEMs), high resolution transmission electron microscopes (HRTEMs), atomic force microscopes (AFMs), the Raman spectrometers, nano-indentation, and tribometers are subsequently used to characterize the microstructures and the properties of the resulting films. It is found that the present films are dominated by the sp2 sites. However, the films demonstrate a moderate hardness together with a low internal stress. The high hardness of the deposited film originates from the crosslinking of the sp2 clusters by the sp3 sites. The presence of the graphite-like clusters in the film structure may be responsible for the low internal stress. What is more important is that the resulting films show excellent tribological properties with high load capacity and excellent wear resistance in humid atmospheres. The relationship between the microstructure determined by the deposition condition and the film characteristic is discussed in detail.  相似文献   

20.
A comparative study has been carried on the role of balanced magnetron (BM) and unbalanced magnetron (UBM) sputtering processes on the properties of SnO2 thin films. The oxygen partial pressure, substrate temperature and deposition pressure were kept 20%, 700 °C and 30 mTorr, respectively and the applied RF power varied in the range of 150–250 W. It is observed that the UBM deposition causes significant effect on the structural, electrical and optical properties of SnO2 thin films than BM as evidenced by X-ray diffraction, C-V, Spectroscopic Ellipsometer and Photoluminescence measurements. The value of band gap (Eg) of the films deposited at 150 W in UBM is found as Eg = 3.83 eV which is much higher than the value of Eg = 3.69 eV as observed in BM sputtering indicating that UBM sputtering results in good crystalline quality. Further, the C-V measurements of SnO2 thin films deposited using UBM at high power 250 W show hysteresis with large flat band shift indicating that these thin films can be used for the fabrication of memory device. The observed results have been attributed to different mechanisms which exist simultaneously under unbalanced magnetron sputtering due to ion bombardment of growing SnO2 thin film by energetic Ar+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号