首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Superconducting samples with nominal composition Bi1.6Pb0.4Sr2Ca2Cu3Oδ were prepared by the conventional solid-state reaction technique. The samples have been characterized by X-ray diffraction, dc electrical resistivity, ac magnetic susceptibility and thermal conductivity. The X-ray diffraction studies were done at room temperature and the lattice constants of the material were determined by indexing all the peaks. All the above measurements show that, there exists two phases i.e. high-Tc (2 2 2 3) and low-Tc (2 2 1 2). The information obtained from dc electrical resistivity data agrees with ac magnetic susceptibility measurements. The onset temperature Tc (onset) and zero resistivity temperature Tc (R = 0) of the samples remains within the temperature 120 ± 1 K and 103 ± 1 K. Thermal conductivity has been measured with a transient plane source (TPS) technique in the temperature range 77–300 K. The estimation of the electrical resistivity change due to scattering by phonons and impurities has been discussed. An increase in thermal conductivity is observed above and below Tc (R = 0). The electron–phonon scattering time, phonon-limited mobility and the size of the electron–phonon constant are also calculated. Wiedemann–Franz law is applied to gain prediction about the magnitude of electronic and phonon contribution to the total thermal conductivity of the samples. It is observed that heat is mainly conducted by the phonons in this system.  相似文献   

2.
To study a behavior of the thermal conductivity near Tc specific heat and thermal diffusivity of the YBa2Cu3O7−δ high-Tc ceramics were simultaneously measured. Close to Tc = 92.30 K the thermal diffusivity and the thermal conductivity discovered minima and the specific heat – maximum. Quantitative analysis of the influence of thermodynamical fluctuations showed the same power laws with Gaussian exponent equal to 0.5 and existing of crossover from the 3D Gaussian to 3D XY critical behavior in the specific heat and thermal conductivity at the approach to Tc. To explain the minimum in thermal conductivity at Tc we propose a mechanism of scattering of phonons on the superconducting fluctuations.  相似文献   

3.
Nonmetallic crystals with high thermal conductivity   总被引:2,自引:0,他引:2  
Nonmetallic crystals transport heat primarily by phonons at room temperature and below. There are only a few nonmetallic crystals which can be classed as high thermal conductivity solids, in the sense of having a thermal conductivity of > 1 W/cmK at 300K. Thermal conductivity measurements on natural and synthetic diamond, cubic BN, BP and AIN confirm that all of them are high thermal conductivity solids. Studies have been made of the effect on the thermal conductivity of nitrogen impurities in diamond, and oxygen impurities in AIN. The nitrogen impurities scatter phonons mostly from the strain field, the oxygen impurities scatter phonons mostly from the mass defects caused by aluminum vacancies. Pure A1N as well as pure SiC, BeO, BP and BeS conduct heat almost as well as does copper at room temperature, while pure natural and synthetic diamonds conduct heat five times better than copper.All of the nonmetallic solids that are known to possess high thermal conductivity have either the diamond-like, boron carbide, or graphite crystal structure. There are twelve different diamond-like crystals, a few boron carbide-type crystals, and two graphite structure crystals that have high thermal conductivity. Analyses of the rock-salt, fluorite, quartz, corundum and other structures show no candidates for this class. The four rules for finding crystals with high thermal conductivity are that the crystal should have (1) low atomic mass, (2) strong bonding, (3) simple crystal structure, and (4) low anharmonicity. The prime example of such a solid is diamond, which has the highest known thermal conductivity at 300K.  相似文献   

4.
Measurements of the specific heat and of the thermal conductivity of pure and iodine doped polyacetylene from liquid helium to room temperature are reported. The thermal conductivity rises linearly from 3 to 50 K and with about the third power of the temperature from 50 to 300 K. The kink at 50 K corresponds to a very unusual minimum of the phonon mean free path, probably caused by resonant scattering of fast thermal phonons (which travel along the chains) on low frequency interchain modes. These results suggest that the polymer chains are oriented parallel to the well-known fibers in polyacetylene.  相似文献   

5.
The existence of a distribution of low-lying energy levels associated with holes trapped at substitutional aluminium impurities is confirmed by measurements of low temperature specific heat and dielectric loss. A large linearly temperature-dependent contribution to the specific heat is observed at temperatures below 1 K, down to 30 mK. A localization temperature describing the width of the distribution of the energy levels is estimated to vary between 3 and 6 K.

We determined the thermal conductivity down to 30 mK and attribute the decrease below the boundary-scattering value to irradiation damage generally, arguing that it is not attributable to resonant scattering.  相似文献   


6.
王拓  陈弘毅  仇鹏飞  史迅  陈立东 《物理学报》2019,68(9):90201-090201
硫化银(Ag_2S)是一种典型的快离子导体材料,前期关于Ag_2S的研究主要集中在光电和生物等领域.最近的研究表明, a-Ag_2S具有和金属一样的良好延展性和变形能力.但是, Ag_2S的热电性能尚无公开报道.本工作合成了单相Ag_2S化合物,系统研究了其在300—600 K范围的物相变化、离子迁移特性和电热输运性质.研究发现, Ag_2S在300—600 K温度区间表现出半导体的电输运性质.由于单斜-体心立方相晶体结构转变, Ag_2S的离子电导率、载流子浓度、迁移率、电导率、泽贝克系数等性质在455 K前后出现急剧变化.在550 K, Ag_2S的功率因子最高可达5μW·cm~(–1)·K~(–2). Ag_2S在300—600 K温度区间均表现出本征的低晶格热导率(低于0.6 W·m~(–1)·K~(–1)). S亚晶格中随机分布的类液态Ag离子是导致b-Ag_2S体心立方相具有低晶格热导率的主要原因.在573 K, Ag_2S的热电优值可达0.55,与Ag_2Se, Ag_2Te, CuAgSe等已报道的Ag基快离子导体热电材料的性能相当.  相似文献   

7.
The thermal conductivity of the antiferromagnet Nd2CuO4 was measured down to 50 mK. Using the spin-flop transition to switch on and off the acoustic Nd magnons, we can reliably separate the magnon and phonon contributions to heat transport. We find that magnons travel ballistically below 0.5 K, with a thermal conductivity growing as T3, from which we extract their velocity. We show that the rate of scattering of acoustic magnons by phonons grows as T3, and the scattering of phonons by magnons peaks at twice the average Nd magnon frequency.  相似文献   

8.
双能隙超导体MgB2的热导   总被引:2,自引:0,他引:2       下载免费PDF全文
测量了多晶MgB2的热导,实验温区为5—300K.在双能隙模型下,用基于BCS超导理论的BRT热导理论对实验结果进行了分析,给出MgB2中两个能隙大小分别为16和51meV.对电子热导的分析结果表明σ能带准粒子受到的杂质散射远小于π能带准粒子受到的杂质散射.与单晶MgB2的热导实验结果相比,多晶MgB2的声子热导结果表明在c方向上热传导声子受到来自σ能带准粒子的散射,显示了MgB2在能量输运上的各向异性. 关键词: MgB2 热导率 能隙  相似文献   

9.
构造了均匀、梯度、随机3种不同周期分布的硅/锗(Si/Ge)超晶格结构.采用非平衡分子动力学(NEMD)方法模拟了硅/锗超晶格在3种不同周期分布下的热导率,并研究了样本总长度和温度对热导率的影响.模拟结果表明:梯度和随机周期Si/Ge超晶格的热导率明显低于均匀周期结构超晶格;在不同的周期结构下,声子分别以波动和粒子性质输运为主;均匀周期超晶格热导率具有显著的尺寸效应和温度效应,而梯度、随机周期Si/Ge超晶格的热导率对样本总长度和温度的依赖性较小.  相似文献   

10.
Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far,extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 m W·m-1·K-2at room temperature and remains non-saturated up to 400 K.Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials.  相似文献   

11.
Xin Zhao 《中国物理 B》2022,31(11):117202-117202
The misfit layer compound (SnS)1.2(TiS2)2 is a promising low-cost thermoelectric material because of its low thermal conductivity derived from the superlattice-like structure. However, the strong covalent bonds within each constituent layer highly localize the electrons thereby it is highly challenging to optimize the power factor by doping or alloying. Here, we show that Bi doping at the Sn site markedly breaks the covalent bonds networks and highly delocalizes the electrons. This results in a high charge carrier concentration and enhanced power factor throughout the whole temperature range. It is highly remarkable that Bi doping also significantly reduces the thermal conductivity by suppressing the heat conduction carried by phonons, indicating that it independently modulates phonon and charge transport properties. These effects collectively give rise to a maximum ZT of 0.3 at 720 K. In addition, we apply the single Kane band model and the Debye-Callaway model to clarify the electron and phonon transport mechanisms in the misfit layer compound (SnS)1.2(TiS2)2.  相似文献   

12.
We have measured the low temperature (from 50 mK up to 5 K) specific heat and thermal conductivity of an amorphous ZrNi superconducting alloy as sputtered and after annealing in the amorphous state. We observe after annealing a decrease of the specific heat anomaly below 0.5 K together with an increase of the thermal conductivity. These variations are in agreement with a decrease of the density of two-level systems (T.L.S.) due to the structural relaxation.  相似文献   

13.
X-ray and neutron powder diffraction studies of UO2 were performed under controlled oxygen partial pressure between room temperature and 1673 K. More than 40 neutron diffraction patterns were recorded. The thermal expansion coefficient of UO2 and the temperature dependence of Debye-Waller factors for oxygen and uranium atoms were determined. The dependence of Debye-Waller factors as a function of temperature is linear and the thermal expansion coefficient follows the classical Debye regime within the temperature range 300-1000 K. Above 1200 K, a departure from this quasi-harmonic behavior is clearly observed. Both an abnormal increase of the thermal expansion and of the oxygen sublattice disorder are evidenced. The departure of the lattice parameter from a linear thermal variation is found to be thermally activated with an effective activation energy close to 1 eV, very similar to the activation energy already found for the electrical conductivity. This new result suggests that polarons may affect the mean lattice parameter. A new thermodynamic model is then proposed to explain the heat capacity thermal variation by only three contributions: harmonic phonons, thermal expansion and polarons.  相似文献   

14.
We present measurements of the electrical resistivity, thermal conductivity, and Hall, Nernst, and Seebeck effects in the mixed state of single crystalline Bi2Sr2CaCu2Ox. It is shown that the sign of the Hall voltage changes twice as temperature decreases below Tc. From the Nernst effect we estimate the transport entropy Sφ to be about 10−10 erg/K cm. Sφ is equal to zero in the normal state, increases and passes through a maximum at the mixed state as expected. The temperature dependences of the thermoelectric power in magnetic fields are analogous to the resistive transition curves. These phenomena are discussed in terms of flux flow. The contribution of the flux flow to the thermal conductivity is estimated to be negligible. Lowering of the thermal conductivity at temperatures below Tc by a magnetic field is attributed to phonon scattering by the vortex lines.  相似文献   

15.
We present values of the specific heat and thermal conductivity from 3-300 K of low-stress amorphous silicon-nitride thin-films determined from measurements using a membrane-based microcalorimeter. The thermal conductivity has a temperature dependence often seen in amorphous solids, but the magnitude is large, with the expected plateau occurring at significantly higher temperatures than seen in other amorphous systems. Specific heat measurements show that the expected ‘peak’ in the vibrational spectrum also occurs at relatively high temperatures. The estimated phonon mean-free-path at 300 K is ≈5 Å, comparable to the inter-atomic spacing, as seen in other amorphous solids. Below ≈ 20 K the mean free path is comparable to or exceeds the thickness of the membrane, indicating that surface scattering dominates the thermal transport. This surface scattering is found to be either specular or diffuse, depending on details of the membrane processing, which affects both the thermal conductivity and specific heat below 10 K.  相似文献   

16.
The effect of dispersion on the focusing of thermal phonons and on the thermal conductivity of silicon single crystals in the boundary scattering regime has been investigated. Analysis of the spectra of acoustic modes obtained for silicon single crystals from inelastic neutron scattering data has demonstrated that, upon transition from long-wavelength phonons to short-wavelength phonons, the directions of their focusing change. With an increase in temperature, this leads to a change in the anisotropy of thermal conductivity of phonons with different polarizations and, consequently, to a change in the anisotropy of the total thermal conductivity. Analysis of the temperature dependence of the thermal conductivity has revealed that the presence of extended flattened sections in the spectrum of short-wavelength transverse phonons indicates anomalously low values of the group velocity and, accordingly, a significant decrease in the contribution from these phonons to the thermal conductivity with increasing temperature. The contribution from longitudinal phonons to the thermal conductivity also significantly increases even at temperatures higher than 110 K and becomes dominant.  相似文献   

17.
胡丽君  刘基  刘政  邱彩玉  周海青  孙连峰 《中国物理 B》2011,20(9):96101-096101
In this work, the thermal properties of a single-walled carbon nanotube (SWCNT) crystal are studied. The thermal conductivity of the SWCNT crystal is found to have a linear dependence on temperature in the temperature range from 1.9 K to 100.0 K. In addition, a peak (658 W/mK) is found at a temperature of about 100.0 K. The thermal conductivity decreases gradually to a value of 480 W/mK and keeps almost a constant in the temperature range from 100.0 K to 300.0 K. Meanwhile, the specific heat shows an obvious linear relationship with temperature in the temperature range from 1.9 K to 300.0 K. We discuss the possible mechanisms for these unique thermal properties of the single-walled carbon nanotube crystal.  相似文献   

18.
The specific heat of uniaxially strained graphene was investigated in the present paper. A uniaxial strain can modulate specific heat depending on the amount and direction of the strain. Specific heat decreases with an increase in the amount of tension strain at a low temperature and increases with compression. Above 110 K, it varies as the amount of strain is reversed to that at a low temperature. These novel properties can be attributed to the strain-induced shift behavior of out-of-plane acoustic phonons, which is different from that of other phonons. When the strain shifts from zigzag to armchair direction, specific heat gradually decreases for a given temperature. However, the variation in specific heat with the strain direction is significantly less than that with the amount of strain. Further, the difference in specific heat between different strain directions decreases with an increase in temperature. This tunable specific heat may provide a new route for both the implementation of thermal memory and the thermal management of graphene nanoelectronic devices.  相似文献   

19.
Gadolinium gallium garnet, Gd3Ga5O12 (GGG) has an extraordinary low-temperature phase diagram. Although the Curie–Weiss temperature of GGG is −2 K, GGG shows no long-range order down to T0.4 K. At low temperatures GGG has a spin glass phase at low fields (0.1 T), a field-induced long-range ordered antiferromagnetic state at fields of between 0.7 and 1.3 T, and, at intermediate fields, an apparent spin-liquid state without long-range order. We have characterized the intermediate field (IF) state through heat capacity, thermal conductivity, and magnetocaloric measurements. Our results show a sharp high-field phase boundary of the thermal irreversibility of the spin glass phase of GGG implying that the intermediate field phase is distinct from the spin glass. The lower field boundary of the AFM phase is shown to have distinct minimum at T0.2 K, in analogy to the minimum in the melting curve of 4He. The existence of such a minimum is confirmed by measurements of the latent heat of the transition below that temperature.  相似文献   

20.
We report the thermal conductivity and specific heat of amorphous silicon thin films measured from 5-300 K using silicon-nitride membrane-based microcalorimeters. Above 50 K the thermal conductivity of thin-film amorphous silicon agrees with values previously reported by other authors. However, our data show no plateau, with a low T suppression of the thermal conductivity that suggests that the scattering of long wavelength, low Q vibrations goes as Q2. The specific heat shows Debye-like behavior below 15 K, with theta(D) = 487 +/- 5 K, and is consistent with a very small contribution of tunneling states in amorphous silicon. Above 15 K, the specific heat deviates less from Debye behavior than does its crystalline allotrope, indicating no significant excess modes (boson peak) in amorphous silicon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号