首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 °C and 1 M.  相似文献   

2.
We have studied the melting of polymeric amphiphilic micelles induced by small-molecule surfactant and explained the results by experimental determination of the interfacial tension between the core of the micelles and the surfactant solutions. Poly(n-butyl acrylate-b-acrylic acid) (PBA-b-PAA) amphiphilic diblock copolymers form kinetically frozen micelles in aqueous solutions. Strong interactions with surfactants, either neutral or anionic [C12E6, C6E4, sodium dodecyl sulfate (SDS)], were revealed by critical micelle concentration (cmc) shifts in specific electrode and surface tension measurements. Since both polymer and surfactant are either neutral or bear negative charges, the attractive interactions are not due to electrostatic interactions. Light scattering, neutron scattering, and capillary electrophoresis experiments showed important structural changes in mixed PBA-b-PAA/surfactant systems. Kinetically frozen micelles of PBA-b-PAA, that are hardly perturbed by concentration, ionization, ionic strength, and temperature stresses, can be disintegrated by addition of small-molecule surfactants. The interfacial energy of the PBA in surfactant solutions was measured by drop shape analysis with h-PBA homopolymer drops immersed in small-molecule surfactant solutions. The PBA/water interfacial energy gammaPBA/H2O of 20 mN/m induces a high energy cost for the extraction of unimers from micelles so that PBA-b-PAA micelles are kinetically frozen. Small-molecule surfactants can reduce the interfacial energy gammaPBA/solution to 5 mN/m. This induces a shift of the micelle-unimer equilibrium toward unimers and leads, in some cases, to the apparent disintegration of PBA-b-PAA micelles. Before total disintegration, polymer/surfactant mixtures are dispersions of polydisperse mixed micelles. Based on core interfacial energy arguments, the disintegration of kinetically frozen polymeric micelles was interpreted by gradual fractionation of objects (polydisperse dispersion mechanism), whereas the disintegration of polymeric micelles in a thermodynamically stable state was interpreted by an exchange between a population of large polymer-rich micelles and a population of small surfactant-rich micelles (bidisperse dispersion mechanism). Finally, in our system and other systems from the literature, interfacial energy arguments could explain why the disintegration of polymer micelles is either partial or total as a function of the surfactant type and concentration and the hydrophobic block molar mass of the polymer.  相似文献   

3.
4.
The self-association characteristics of very short and well-defined poly(butyl acrylate)-b-poly(acrylic acid) (PBA-b-PAA) block copolymers in water have been studied. The diblocks are asymmetric with the PBA block longer than the PAA block, giving rise to hollow sphere morphology. This is affirmed by experimental data and theoretical evaluations of the hydrophilic and hydrophobic domain sizes, as well as a value close to 1 for the ratio of the hydrodynamic to the gyration radius of the micelles. Besides, the untypically short PBA blocks (polymerization number around 15) render the micelles dynamic. Indications in support include among others the following: the CMC (critical micellar concentration) values depend, together with the aggregation numbers and the micellar sizes, on the block lengths, as predicted by theory; above the CMC their sizes are concentration-independent, while the micelles disappear below CMC. A comparison was also made with a random PBA-co-PAA copolymer of similar length, which self-associates at an apparent CMC 1 order of magnitude larger than those of the block copolymers, but the size of the formed micelles depends on the concentration.  相似文献   

5.
基于星型杂臂环糊精聚合物的纳米胶束: 构筑及包合特性   总被引:1,自引:0,他引:1  
通过胺化反应和原子转移自由基聚合(ATRP),合成了以β-环糊精为“核”,以1条聚乙二醇和2~4条聚N-异丙基丙烯酰胺为“臂”的双亲水性星型杂臂聚合物(MPEG-CD-PNIPAMx)。通过1H NMR,13C NMR和凝胶渗透色谱/多角度激光光散射联用(SEC/MALLS)对其结构进行了表征。对1H NMR峰面积积分计算得聚N-异丙基丙烯酰胺“臂”数为2~4。通过紫外-可见分光光度计测得该星型大分子的较低溶液临界温度(LCST)为37℃。MPEG-CD-PNIPAMx在其水溶液温度达到LCST以上时呈现两亲性,并通过疏水相互作用自组装成以聚N-异丙基丙烯酰胺为“核”,以β-环糊精及聚乙二醇为“壳”的纳米级胶束粒子。通过MPEG-CD-PNIPAMx及其胶束粒子在芘溶液中的荧光光谱,发现胶束粒子对疏水性客体小分子的包合可发生在处于壳层的β-环糊精的疏水性空腔和胶束粒子的疏水性内核。  相似文献   

6.
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-cysteine (ZLC-NCA) with amino-terminated poly(L-lactide) (NH 2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by (1)H NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers. The cell adhesion and cell spread on the PZLC-b-PLLA and PLC-b-PLLA films were enhanced compared to those on pure PLA film. PLC-b-PLLA can self-assemble to form micelles in aqueous media. A pyrene probe is used to demonstrate the micelle formation of PLC-b-PLLA in aqueous solution. Due to the ease of disulfide exchange with thiols, the obtained micelles are reversible shell cross-linked (SCL) micelles. The morphology and size of the micelles are studied by dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM).  相似文献   

7.
Polymerization-induced self-assembly (PISA) has established itself as a powerful and straightforward method to produce polymeric nano-objects of various morphologies in (aqueous) solution. Generally, spheres are formed in the early stages of polymerization that may evolve to higher order morphologies (worms or vesicles), as the solvophobic block grows during polymerization. Hitherto, the mechanisms involved in these morphological transitions during PISA are still not well understood. Combining a systematic study of a representative PISA system with rheological measurements, we demonstrate that—unexpectedly—unimer exchange is not necessary to form higher order morphologies during radical RAFT-mediated PISA. Instead, in the investigated aqueous PISA, the monomer present in the polymerization medium is responsible for the morphological transitions, even though it slows down unimer exchange.  相似文献   

8.
The hydrodynamic radii of micelles formed by amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution determined using fluorescence correlation spectroscopy (FCS) depend on the nature of the fluorescent tracer used. We have compared the values of the hydrodynamic radii of the unimers and the micelles as well as the critical micelle concentrations (CMC), using as tracers (1) the identical diblock copolymers being fluorescence-labeled at the hydrophilic or the hydrophobic block terminus [Bonné et al. Colloid Polym Sci (2004) 282:833–843], and (2) a low molar mass fluorescence dye, rhodamine 6G. Whereas similar values for the CMC were found for both probes, the hydrodynamic radius of micelles is significantly underestimated using a free dye as a tracer in FCS, especially near the CMC. We attribute this discrepancy to the fast exchange of the dye between micelles and solution.  相似文献   

9.
On the basis of the Aniansson–Wall (A–W) theory, a calculation method for the time evolution of association-number distribution during micelle formation of diblock copolymer in solution is presented. The rate constant for the elemental process of a chain expulsion from a micelle is evaluated as a function of the association number by application of Halperin's treatment based on the Kramers rate theory. Numerical calculations are carried out for both cases of micellization from unimer state and micellar relaxation under a temperature jump from one micellar state to another. In the micelle relaxation, the micelle size changes stepwise with two steps, clearly showing the characteristic feature of the A–W mechanism, where there exist two processes, the fast process undergoing by consuming/releasing free unimers and the slow process accompanied with almost no change of unimer concentration. On the contrary, in the micellization from unimer state, the very fast process is observed, where the free chains get together quickly to form temporal micelles, and is followed by an ordinary micellar relaxation.  相似文献   

10.
新型两亲性含糖嵌段聚合物的合成与自组装   总被引:1,自引:0,他引:1  
以β-环糊精(β-CD)和2-乙基-2-噁唑啉(EtOz)为原料, 通过活性端基化学偶联法制备了乙酰麦芽七糖/聚(2-乙基-2-噁唑啉)两嵌段聚合物(AcMH-b-PEtOz), 借助核磁共振氢谱、红外光谱和凝胶渗透色谱等手段证实了产物的化学结构. 采用核磁共振氢谱、荧光光谱、透射电子显微镜、动态光散射及紫外-可见分光光度等方法探讨了产物在水溶液中的自组装行为. 结果表明, 所得嵌段聚合物直接溶于水后可通过自组装形成纳米球形“核-壳”结构胶束, 同时具有温度响应性. 所得聚合物的临界胶束浓度(cmc)为4~7 mg/L, 平均粒径(d)为83~115 nm, 临界相转变温度(LCST)为49~64 ℃, 并且均可通过PEtOz的链长进行调控.  相似文献   

11.
The thermoresponsive micellization behavior of amphoteric polyurethane (APU) was studied in HCl aqueous solution (pH 2.0) through light scattering, transmission electron microscopy, and fluorescent measurement. When APU concentration is high enough, nonreversible assembly of macromolecules can be observed with temperature decreasing from 25 to 4 degrees C. However, micelles reaching equilibrium at 4 degrees C can self-assemble reversibly in the temperature range of 4-55 degrees C. According to our research, we found it is the temperature sensitivity of the poly(propylene oxide) (PPO) segments that leads to the reassembly of APU at lower temperature. We proposed that core-shell-corona micelles ultimately form with hydrophobic core, PPO shell, and hydrophilic corona when temperature increases from 4 to 25 degrees C. This structure is very stable and does not change at higher temperatures (25-55 degrees C). That provides a new way to obtain stable micelles with small size and narrow size distribution at higher concentration of APU.  相似文献   

12.
The solubilization dynamics of oleic acid by aqueous sodium taurodeoxycholate solutions at 37°C does not conform to previous resistance in series models involving diffusion and interfacial steps. This is especially true as the ionic strength of the aqueous solution is increased by adding NaCl or by increasing the taurodeoxycholate concentration above 2%. Experiments conducted with a liquid/liquid stirred cell show that as the ionic strength is increased, the flux of oleic acid into the aqueous solution exceeds a reasonable value for the diffusion limit, assuming that oleic acid diffuses only in mixed micelles, and that the flux becomes independent of flow at these high ionic strengths. Two alternative models for the solubilization process are proposed. One involves a rapid exchange of oleic acid between mixed micelles and oleic acid free micelles in parallel with mixed micelle diffusion; and the second involves formation of a small emulsion droplet at the interface, which contains significantly more oleic acid than a mixed micelle, and which rapidly dissolves into micellar solution as the droplet leaves the interface.  相似文献   

13.
We have used small-angle neutron scattering to study how micelle morphology of the tail-polymerizable surfactants MUTAB and MUTAC (ω-methacryloyloxyundecyltrimethylammonium bromide and chloride) is affected by classic self-assembly modifiers such as temperature changes, salt addition, and counterion exchange, as a function of their conversion from monomer into polymer amphiphile in aqueous solution. Contrary to common assumptions about polymerized surfactants, these systems remain in dynamic equilibrium under all conditions examined and at all conversions (except for a small amount of high-molecular-weight precipitation by MUTAC). Counterintuitively, the polymerized methacrylate backbone has little influence on aggregate morphology, except for the formation of rod-like mixed micelles of polymerized and unpolymerized surfactant at intermediate conversions. The addition of salt produces a transition to rod-like micelles at all conversions except in the unpolymerized surfactant, which has some characteristics of an asymmetric bolaform surfactant and retains its spheroidal geometry under almost all conditions.  相似文献   

14.
刘志勇 《高分子科学》2017,35(8):924-938
Well-defined p H-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers(PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization(ATRP),ring opening polymerization(ROP) and "click" chemistry.Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy(FTIR),proton nuclear magnetic resonance(1H-NMR),and gel permeation chromatography(GPC).Then,the polymers could selfassemble into micelles in aqueous solution,which was demonstrated by dynamic light scattering(DLS) and transmission electron microscopy(TEM).The p H-responsive self-assembly behavior of these copolymers in water was investigated at different p H values of 7.4 and 5.0 for controlled doxorubicin(DOX) release,and these results revealed that the release rate of DOX could be effectively controlled by altering the p H,and the release of drug loading efficiency(DLE) was up to 88%(W/W).CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility,whereas the DOX-loaded micelles remained with high cytotoxicity for He La cells.Moreover,confocal laser scanning microscopy(CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect.The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX.These results successfully indicated that p H-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release.  相似文献   

15.
A series of well-defined poly(ethylene oxide)- b-poly(2-(diethylamino)ethyl methacrylate) (PEO- b-PDEA) diblock copolymers containing PEO block of identical chain length and PDEA block with varying degrees of polymerization (DP, in the range of 32-154) were prepared via atom transfer radical polymerization (ATRP) employing a PEO-based macroinitiator (DP = 113). Upon a pH-jump from 3 to 12 under highly efficient stopped-flow mixing conditions, PEO- b-PDEA copolymers spontaneously form spherical micelles of increasing sizes and aggregation numbers ( N agg) with increasing PDEA chain lengths. Stopped-flow light scattering technique was used to probe the pH-induced micellization kinetics of PEO- b-PDEA copolymers, aiming to elucidate the PDEA chain-length effects on the unimer-to-micelle transition process. Upon a stopped-flow pH-jump from 3 to 12, the obtained dynamic traces can be well-fitted with double exponential functions. The calculated fast and slow characteristic relaxation times (tau 1 and tau 2) can be ascribed to the formation of quasi-equilibrium micelles (fast process) and subsequent relaxation into final equilibrium micelles (slow process), respectively. For PEO 113- b-PDEA 32 and PEO 113- b-PDEA 61, tau 2 is almost independent of polymer concentrations, suggesting that the relaxation from quasi-equilibrium micelles into final equilibrium micelles mainly proceeds via insertion/expulsion of unimer chains. Upon increasing the DP of pH-responsive PDEA block to 89, 117, and 154, the obtained slow relaxation time, tau 2, tends to decrease with increasing polymer concentrations, suggesting that the slow process is dominated by the micelle fusion/fission mechanism. The apparent activation energy ( E a) associated with tau 2 has also been determined from temperature-dependent micellization kinetics for five PEO- b-PDEA copolymers. It was found that during micellization, copolymers with longer PDEA blocks exhibit much lower E a compared to those with shorter blocks. Thus, we observed experimentally for the first time that increasing the hydrophobic block length in double hydrophilic block copolymers (DHBCs) can transform the mechanism of the slow process from unimer insertion/expulsion to micelle fusion/fission.  相似文献   

16.
A novel, hyperbranched, amphiphilic multiarm biodegradable polyethylenimine-poly(gamma-benzyl-L-glutamate) (PEI-PBLG) copolymer was prepared by the ring-opening polymerization of gamma-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA) with hyperbranched PEI as a macroinitiator. The copolymer could self-assemble into core-shell micelles in aqueous solution with highly hydrophobic micelle cores. As the PBLG content was increased, the size of the micelles increased and the critical micelle concentration (CMC) decreased. The surface of the micelles had a positive zeta potential. The cationic micelles were capable of complexing with plasmid DNA (pDNA), which could be released subsequently by treatment with polyanions. The PEI-PBLG copolymer formed unimolecular micelles in chloroform solution. The pH-sensitive phase-transfer behavior exhibited two critical pH points for triggering the encapsulation and release of guest molecules. Both the encapsulation and release processes were rapid and reversible. Under strong acidic or alkaline conditions, the release process became partially or completely irreversible. Thus, this copolymer system should be an attractive candidate for a gene- or drug-delivery system in aqueous media and could provide the phase-transfer carriers between water and organic media.  相似文献   

17.
The aggregation properties of Tyr-Phe dipeptide and Val-Tyr-Val tripeptide were studied in aqueous solution and in the presence of SDS and SDS-polymer environments using UV-visible, surface tension, fluorescence and circular dichroism (CD) techniques. Both the peptides formed micelles. The cmc values obtained for dipeptide and tripeptide are 2×10(-5) and 4×10(-5) M, respectively in aqueous solution at 25°C. The presence of additives (SDS and polymer) hindered the micelle formation of peptides. The cmc values obtained by various methods are in good agreement with each other. Effect of peptides on the aggregation properties of SDS also was investigated. The cmc of SDS was decreased in presence of peptides and were reduced with increase in temperature. Using monophasic micellization concept, the association constant (K(A)) for the SDS-peptide mixed micellar systems was determined. Using biphasic model, the thermodynamic parameters viz; ΔG°(m), ΔH°(m) and ΔS°(m) for SDS-water and SDS-peptide-water mixed micellar systems, the standard free energy for transfer of SDS from aqueous to peptide additive environments were estimated at various temperatures. These results suggest that the SDS is more stable in micellized form in the SDS-water-peptide ternary systems compared to the situation in the corresponding SDS-water binary systems.  相似文献   

18.
以聚乙二醇单甲醚甲基丙烯酸酯(MPEGMA)为大分子单体, 甲基丙烯酸六氟丁酯(HFMA)为含氟单体, N-异丙基丙烯酰胺(NIPAAm)为功能性单体, 采用大分子单体接枝共聚法, 制备了一种温敏性含氟两亲接枝共聚物P(NIPAAm-co-HFMA)-g-PEG. 利用FTIR, 1H NMR, 19F NMR和GPC对共聚物的结构进行表征; 采用紫外-可见分光光度计测定了共聚物的低临界溶解温度(LCST)约为38.9 ℃, 高于人体正常的生理温度; 利用荧光探针技术测定了共聚物的临界胶束浓度(cmc), 结果表明, 当共聚物溶液温度高于LCST时, 其cmc明显变小; 利用激光光散射粒度仪(LLS)测定了共聚物胶束的水合粒径及其分布, 当温度达到LCST时, 胶束粒径明显变小, 温度过高时, 粒径又有所增大; 利用透射电子显微镜(TEM)研究了共聚物胶束的形貌, 结果表明, P(NIPAAm-co-HFMA)-g-PEG在水溶液中可自组装成球状胶束粒子, 随着温度的升高, 共聚物胶束由松散的核壳结构转变成更加紧凑的球状结构, 且粒径明显变小.  相似文献   

19.
The process of asymmetrization of spherical micelles in an aqueous sodium decyl sulfate solution is studied by scanning calorimetry. This process represents the intermicellar phase transition with an equilibrium temperature of 300 K occurring at a sodium decyl sulfate concentration of 0.12 mol/kg. The partial molar heat capacities of sodium decyl sulfate in a solution are determined and the thermodynamic functions of the rearrangement of micelles and their temperature dependences are calculated. The regions of the thermodynamic stability of solutions that contain spherical and nonspherical micelles, the former being predominant, are revealed. Equilibrium constants of the process and fractions of surfactant aggregated into spherical and nonspherical micelles are calculated for the model of monomolecular reversible reaction. For nonspherical micelles, the shape of the ellipsoid of revolution is proposed.  相似文献   

20.
Some water-soluble organic iodine compounds (aqueous solution) can be analyzed for iodine by isotopically exchanging with labelled elementary iodine (organic solution). The method is applicable to exchange systems in which the rate of the exchange is rather small but measurable, before the exchange equilibrium is attained. The iodine content of iodoaromatic amino acids such as 5-iodouracil and 3,5-diiodotyrosine can be determined within an error of ±4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号