首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel water soluble ditopic guest, the quaternary ammonium salt of N,N'-bis(ferrocenylmethylene)-diaminobutane (1), and a known water soluble ditopic host, benzenetetracarboxylic dianhydride bridged bis(β-cyclodextrin)s (2), have been synthesized and characterized. ^1H NMR spectra and cyclic voltammogram (CV) studies revealed the host-guest interactions between them in aqueous solution. The supramolecular interaction also exists in solid state as confirmed by the studies of the solid samples, which were obtained by frozen-drying the solution sampies, using FTIR spectroscopy and differential scanning calorimetry (DSC) techniques. TEM measurement demonstrated that wire-shaped supramolecular aggregates exist in the aqueous solution of the two compounds. The lengths of the aggregates could reach micrometers.  相似文献   

2.
We report a combined NMR and dynamic light scattering (DLS) study on the size of supramolecular structures formed by disodium guanosine 5'-monophosphate, Na(2)(5'-GMP), at pH 8. In general, two distinct types of aggregate species are present in an aqueous solution of Na(2)(5'-GMP). One type consists of stacking 5'-GMP monomers, and the other contains stacking G-quartets. Both types of aggregates can be modeled as rodlike cylinders. The cylinder diameter is 10 and 26 A for monomer aggregates and quartet aggregates, respectively. For Na(2)(5'-GMP) concentrations between 18 and 34 wt %, the cylinders formed by stacking G-quartets have an average length between 8 and 30 nm, corresponding to a stack of approximately 24-87 G-quartets. These nanoscale aggregates are significantly larger than what had previously been believed for Na(2)(5'-GMP) self-association at pH 8. The length of both types of 5'-GMP aggregates was found to increase with Na(2)(5'-GMP) concentration but was insensitive to the added NaCl in solution. While the aggregate size for monomer aggregates increases with a decrease in temperature, the size of G-quartet aggregates is essentially independent of temperature. We found that the size of G-quartet aggregates is slightly larger in D(2)O than in H(2)O, whereas the size of monomer aggregates remains the same in D(2)O and in H(2)O. We observed a linear relationship between the axial ratio of the 5'-GMP cylinders and the Na(2)(5'-GMP) concentration for both types of 5'-GMP aggregates, which suggests a common stacking mechanism for monomers and G-quartets.  相似文献   

3.
Tri- and pentablock amphiphilic copolymers containing hydrophobic poly(D,L-lactide) block(s) and hydrophilic polyethers were synthesized in order to obtain new precursor architectures suitable for drug delivery systems. Polyglycidol-6-poly(ethylene oxide)-b-poly(D,L-lactide) possess high hydroxyl functionality provided by the linear polyglycidol block. Thus very stable hydroxyl functionalized micelles in aqueous media were obtained. On the other hand poly(D,L-lactide)-b-poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(D,L-lactide) form temperature sensitive aggregates. The copolymers obtained were analyzed by SEC and NMR, and their aqueous solution properties were followed by cloud point measurements and determination of critical micellization temperature. TEM was used for particles visualization.  相似文献   

4.
(27)Al NMR spectroscopy can be used for study of coordination and solvation in both aqueous and non-aqueous solutions. Various octahedral and tetrahedral aluminium complexes have been proved to exist in solution by (1)H and (27)Al NMR spectroscopy. (27)Al nuclear magnetic resonance (NMR) spectroscopy also can be used to determine thermodynamic properties of complexes in the solution. The formation of [Al(OH)(4-n)(CH(3)OH)(n)]((n-1)+) (n=1, 2, 3 and 4) species through the reaction of aluminate anion with methanol has been investigated by (27)Al NMR spectroscopy. (27)Al NMR spectra reveal evidence for Al bound to one, two, three and four CH(3)OH, the production of aluminate species is affected by the MeOH/H(2)O. Results obtained from 2D EXSY experiments clearly confirm there are exchanges among the species.  相似文献   

5.
Well-defined amphiphilic cubic silsesquioxane-poly(ethylene oxide) (CSSQ-PEO) was prepared from octakis (dimethylsiloxy)octasilsesquioxane (Q8M8(H)) and allyl-PEO through a hydrosilylation reaction. The structure of CSSQ-PEO was characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). The amphiphilic properties and aggregation process of CSSQ-PEO in aqueous solution were investigated by fluorescence, dynamic and static light scattering (DLS and SLS), and transmission electron microscopy (TEM). The critical aggregation concentration (CAC) determined by fluorescence measurements was found to be 0.28 mg/mL. Combinations of DLS, SLS, and TEM studies showed the existence of core-corona micelle with hydrophobic CSSQ as the core and hydrophilic PEO as the corona in aqueous solution. The observation of two size distribution peaks from DLS measurements revealed the coexistence of small amounts of unassociated unimolecular micelles (approximately 10% of the scattered intensity) together with micellar aggregates when the CSSQ-PEO concentration was < or = 2 mg/mL. The hydrodynamic radii (R(h)) of unassociated unimolecular micelle and micellar aggregates were found to be 26 and 79 nm, respectively. A large R(g)/R(h) ratio (1.46) and the extremely small value of average chain density (4 x 10(-4) g/cm3) indicate the small hydrophobic CSSQ core was surrounded by the extended PEO coronae. The aggregation number (N(agg)) of CSSQ-PEO in aqueous solution was found to be 38 +/- 2 from SLS and 31-40 from TEM, respectively. The long PEO segments act as a spacer between the spherical aggregates, which facilitate the formation of a network-like structure at high concentration.  相似文献   

6.
Nine compounds have been isolated from the ethyl acetate soluble fraction of C. sinensis, namely protocatechuic acid (1), trans-caffeic acid (2), methyl rosmarinate (3), rosmarinic acid (4), kaempferide-3-O-β-D-glucopyranoside (5), kaempferol-3-O-β-D-glucopyranoside (6), quercetin-3-O-β-D-glucopyranoside (7), kaempferide-3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside (8) and kaempferol-3-O-α-L-rhamno-pyranosyl (1→6)-β-D-glucopyranoside (9), all reported for the first time from this species. The structures of these compounds were deduced on the basis of spectroscopic studies, including 1D and 2D NMR techniques. Compounds 1-9 were investigated for biological activity and showed significant anti-inflammatory activity in the carrageen induced rat paw edema test. The antioxidant activities of isolated compounds 1-9 were evaluated by the DPPH radical scavenging test, and compounds 1, 2, 4 and 7-9 exhibited marked scavenging activity compared to the standard BHA. These compounds were further studied for their anti-glycation properties and some compounds showed significant anti-glycation inhibitory activity. The purity of compounds 2-5, 8 and 9 was confirmed by HPLC. The implications of these results for the chemotaxonomic studies of the genus Cordia have also been discussed.  相似文献   

7.
New fluorescent heterocyclic ligands were synthesized by the reaction of 8‐(4‐chlorophenyl)‐3‐alkyl‐3H‐imidazo[4',5':3,4]benzo [1,2‐c]isoxazol‐5‐amine with p‐hydroxybenzaldehyde and p‐chlorobenzaldehyde in good yields. The coordination ability of the ligands with Fe3+ ion was examined in an aqueous metanolic solution. Schiff base ligands and their metal complexes were characterized by elemental analyses, IR, UV–vis, mass, and NMR spectra. The optical properties of the compounds were investigated and the results showed that the fluorescence of all compounds is intense and their obtained emission quantum yields are around 0.15 – 0.53. Optimized geometries and assignment of the IR bands and NMR chemical shifts of the new complexes were also computed by using density functional theory (DFT) methods. The DFT‐calculated vibrational wavenumbers and NMR chemical shifts are in good agreement with the experimental values, confirming suitability of the optimized geometries for Fe(III) complexes. Also, the 3D‐distribution map for HOMO and LUMO of the compounds were obtained. The new compounds showed potent antibacterial activity and their antibacterial activity (MIC) against Gram‐positive and Gram‐negative bacterial species were also determined. Results of antibacterial test revealed that coordination of ligands to Fe(III) leads to improvement in the antibacterial activity.  相似文献   

8.
Atomic force microscopy (AFM) of porphyrin aggregates formed on silica from acidic aqueous solution is used to investigate the basis for the previously reported counterion dependence of the optical spectra of aggregates of H(2)TCPP(2+), the diacid form of tetra(p-carboxyphenyl)porphyrin (TCPP). Resonance light scattering confirms the presence of excitonically coupled porphyrin aggregates in solutions of H(2)TCPP(2+) in both aqueous HCl and HNO(3). Aggregates formed in aqueous HNO(3) solutions show resonance light scattering (RLS) at wavelengths within both the H and J aggregate absorption bands and are imaged on the surface of silica as nanorods about 3 to 4 nm in height. H(2)TCPP(2+) aggregates in aqueous HCl solution exhibit RLS when excited within the blue-shifted Soret band (H band) and produce AFM images on silica of ring-shaped structures ranging from about 200 to 2000 nm in diameter. Fluorescence excitation and emission spectra reveal quenching of the Q-band emission in the aggregates at a pH less than 1 and confirm the existence of a single species, assigned to a dimer, at a pH just above 1. The morphology of the nanostructures as revealed by AFM provides insight into the structural basis for the counterion-dependent optical properties of H(2)TCPP(2+) aggregates.  相似文献   

9.
Gold nanoparticles (AuNPs) are attractive materials due to their special optical and electronic properties. However, they tend to aggregate particularly in the presence of thiol‐containing compounds. In this study, to investigate the effect of surface conjugation with thiol‐containing compounds on colloidal stability, thiol compounds with various structures as modifying agents were used. To this end, AuNPs were synthesized and stabilized by trisodium citrate in aqueous solution, and then modified with thiol‐containing compounds, namely cysteamine hydrochloride (MEA, containing primary amine groups), 2‐mercaptoethanol (BME, containing hydroxyl groups), 1‐dodecanthiol (LCA, containing long‐chain alkyl groups) and thioglycolic acid (TGA, containing carboxylic acid groups). We studied the effect of thiol ligands on solution stability of colloidal AuNPs and on the formation of aggregates originating from the modification process using UV–visible spectroscopy, dynamic light scattering, field emission scanning electron microscopy and transmission electron microscopy. Results showed that surface modification with MEA, BME and LCA led to the formation of aggregates. However, conjugation with TGA showed a concentration‐dependent behaviour: surface modification with low concentration resulted in the formation of aggregates whereas that with high concentration of TGA did not disturb the colloidal stability of AuNPs. Finally, the effect of surface modification on temperature increase of solutions originating from infrared light irradiation was studied, where the temperature increase depends on the surface‐modifying compound.  相似文献   

10.
In the present work, inclusion complexes of spironolactone (SP) with β-cyclodextrin (β-CD) in solid phase and aqueous solution were studied by solubility methods, NMR spectroscopy and thermal analysis. The results showed different kinds of complexations when freeze-drying and kneading methods were used. The freeze-drying product (1:1, SP:β-CD) showed lower degree of complexation and stability than the (1:2, SP:β-CD) compound obtained by kneading method. The spironolactone molecule was also studied by NMR spectroscopy at 400 MHz. The chemical shifts of all spironolactone atoms and their inclusion compounds were assigned. Extensive use of 1D and 2D NMR techniques, including ROESY experiment, allowed verifying the position of the spironolactone molecule inside the cyclodextrin cavity in both situations. In addition, DFTB-SCC quantum mechanical calculations of the inclusion compounds were performed. The predicted structural properties are in good agreement with ROESY NMR results.  相似文献   

11.
Solution 29Si NMR spectroscopy results of zeolite precursor solutions of composition 1 SiO2:4 C2H5OH:0.36/n R+n[OH-]n:20 H2O are reported. This work employs isotopically enriched 29Si materials to aid in spectral interpretation. Using both 1D and 2D methods, spectra of solutions containing tetrapropylammonium hydroxide are wholly consistent with the existing silicate chemistry literature and indicate that the majority of the species are high-symmetry silicate clusters previously observed in aqueous solutions. The results are inconsistent with the nanoblock or nanoslab model proposed by Kirschhock and co-workers. Mixtures containing the 4,4'-trimethylene-bis(1,1'-dimethylpiperidinium) dihydroxide cation were also studied. These mixtures have similar speciation to the TPA solutions, although the relative populations of the species are different. Preliminary variable temperature 29Si NMR of these mixtures shows that the exchange properties of the high-symmetry silicate species, most notably the tetrahedral tetramer, depend on the organocation identity.  相似文献   

12.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophilic, pH and temperature responsive poly(dimethyl amino ethyl methacrylate) (PDMAEMA) block and one weakly hydrophobic, water insoluble, potentially thermoresponsive poly(hydroxy propyl methacrylate) (PHPMA) block, are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR, and FTIR spectroscopies. The PDMAEMA‐b‐PHPMA amphiphilic block copolymers self‐assemble in different nanostructured aggregates when inserted in aqueous media. The effects of different solubilization protocols, as well as the effects of solution temperature and pH on the structure of the aggregates, are studied by light scattering and fluorescence spectroscopy measurements. Experimental results indicate that there is a number of solution preparation and physicochemical parameters that allow the control and manipulation of the structure and thermoresponsive properties of PDMAEMA‐b‐PHPMA aggregates in aqueous media. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1962–1977  相似文献   

13.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

14.
PDMS-b-PEO两亲性嵌段共聚物的合成及溶液性质   总被引:2,自引:0,他引:2  
通过正丁基锂(n-BuLi)引发的六甲基环三硅氧烷(D3)阴离子开环聚合以及单硅氢封端聚二甲基硅氧烷(PDMS)与烯丙基聚氧乙烯醚(PEO)的硅氢加成反应, 合成得到了一系列分子量分布窄的PDMS-b-PEO两亲性嵌段共聚物. 利用凝胶渗透色谱(GPC)、傅里叶变换红外(FTIR)光谱、氢核磁共振谱(1H-NMR)表征了嵌段共聚物的结构组成. 通过表面张力仪测定得到了不同结构嵌段共聚物的平衡表面张力及临界胶束浓度(cmc). 结果显示, 该系列嵌段共聚物的cmc值不仅受到憎水性嵌段的影响, 同时也受嵌段共聚物的体积效应以及嵌段共聚物的几何形状(即嵌段共聚物各嵌段的比例)的影响, PDMS-b-PEO两嵌段共聚物的cmc值表现出了随憎水嵌段增加而相应增加的趋势. 通过透射电子显微镜(TEM)表征发现, PDMS-b-PEO嵌段共聚物在选择性溶剂水中会自组装形成球状、棒状以及囊泡状的聚集体.  相似文献   

15.
Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.  相似文献   

16.
Two amphiphilic water-soluble sulfonatomethylated calix[4]resorcinarene derivatives were studied by various 1H NMR techniques (1H NMR titration, 2D NOESY, NMR diffusion measurements). The derivative with methyl moieties at the lower rim (1) was found to be non-aggregated in the range 0–10 mM in aqueous solutions. Lengthening of the lower rim substituent to pentyl (2) results in self-aggregation of 2 in aqueous solutions with the aggregation number varying from 3 at 1 mM to 20 at 10 mM. The 2D NOESY 1H NMR spectroscopy data reveal an unusual head-to-tail packing mode in aqueous solutions, resulting from the cooperative effect of weak hydrophobic interactions. Binding of guests (tetramethylammonium and N-methylpyridinium) results in additional stabilization of the aggregates whilst the head-to-tail packing mode of the aggregate is retained.  相似文献   

17.
The synthesis and characterization of the new ligand 2,9-bis[N,N-bis(2-aminoethyl)aminomethyl]-1,10-phenanthroline (L) are reported. L contains two diethylenetriamine units connected on the central nitrogen atom by a 1,10-phenanthroline group forming a symmetrical branched ligand. The basicity and binding properties of L toward Cu(II) and Zn(II) in aqueous solution were determined by means of potentiometric, UV-vis, fluorescence, and 1H and 13C NMR techniques. L behaves as pentaprotic base under the experimental conditions used; from HL+ to H4L4+ species it is the secondary amine functions that are protonated while in the H5L5+ species also the phenanthroline is involved in protonation. L does not show fluorescence properties in the range of pH (0-14) investigated. It forms both mono- and dinuclear stable species where the phenanthroline is directly involved with both nitrogens in the coordination of the first metal which is coordinated in a pentacoordination environment also by one dien unit. The other dien unit undergoes easy protonation in the mononuclear complex while it binds the second metal in the dinuclear species. For this reason, L, in providing two different binding areas for metal coordination, behaves as an unsymmetrical compartmental ligand; one area is formed by one dien unit and by the phenanthroline, and the other by the remaining dien unit. This produces unsymmetrical metal complexes both for the mono- and dinuclear species; however, the role of the binding areas is fast exchanging in aqueous solution, at least on the NMR time scale. Solution studies and the three crystal structures of the [Zn(H2L)]4+, [[Cu(H2L)](ClO4)]3+, and [[Cu2LCl2](ClO4)]+ species highlight the unsymmetrical compartmental behavior of L as well as the host properties of the complexes in adding exogenous ligands such as hydroxide, pherchlorate, and chloride anions.  相似文献   

18.
The chemical and biological properties of a simple and traditional V(5+) coordination complex, dipicolinatooxovanadium(V) (abbreviated [VO2dipic]?), are described in order to present a hypothesis for a novel mode of action wherein a hydrophobic membrane environment plays a key role. Specifically, we propose that the compartmentalization and both chemical and biological transformations of vanadium-complexes direct whether beneficial or toxic effects will be observed with this class of compounds. This concept is based on the formation of high levels of uncontrollable reactive oxygen species (ROS) from one-electron reactions or alternative events possibly initiated by a two-electron reaction which may be directly or indirectly beneficial by reducing the high levels of ROS. The properties of dipicolinatooxovanadium(V) compounds in aqueous solution (D.C. Crans, et al., Inorg. Chem. 39 (2000) 4409–4416) are very different from those in organic solvents (S.K. Hanson, et al., J. Am. Chem. Soc. 131 (2009) 428–429) and these differences may be key for their mode of action. Since other vanadium complexes are known to hydrolyze upon administration, the low stability of the aqueous complex requires entrapment in hydrophobic environments for such a complex to exist sufficiently long to have an effect. The suggestion that the environment changes the reactivity of the compounds is consistent with the very different modes of action by which one complex act. In short, a novel hypothesis is presented for a mode of action of vanadium compounds based on differences in properties resulting from environmental conditions. These considerations are supported by recent evidence supporting a role for membranes and signal transduction events (D.A. Roess, et al. Chem. Biodivers. 5 (2008) 1558–1570) of the insulin-enhancing properties of these compounds.  相似文献   

19.
Water diffusivity D measured by using NMR techniques in Na-smectite suspensions decreases with increasing smectite fraction (up to 50 wt%), but increases with increasing salinity (NaCl or CaCl(2) aqueous solutions) at a fixed clay fraction. The increase, larger for CaCl(2) solutions, is explained by aggregation of clay particles when high salinities are reached. Macroscopic organisation of dense mixtures of clay and aqueous solutions can be inferred by T(2) transverse NMR relaxation times which are sensitive to the volume to surface ratio. Dispersed suspensions exhibit mono-modal T(2) distributions, whereas bimodal T(2) distributions are observed for flocculated systems. The bimodal T(2) distributions are interpreted as a measurement of the spacing between clay particles within aggregates and between aggregates. Finally, the diffusion data can be gathered in an unique curve using the Debye length and the measured spacing between particles. When the thickness of the electro-diffuse layer (Debye length) is of the same order as the spacing between clay particles, the water diffusivity decreases. Otherwise it is constant at about 2.22+/-0.25x10(-9) m(2)/s. This last result illustrates clearly the effect of electro-chemical properties of smectite on water diffusivity.  相似文献   

20.
1,3-Dioxo compounds can be prepared from selenium-mediated carbonylation of lithium enolates in the presence of carbon monoxide. Intermediates in this reaction include several organic species that contain both selenium and lithium. The first step in understanding the detailed reaction mechanism is to understand the structure of these intermediates. Like most organolithium compounds, these species can exist as aggregates in solution. The B3LYP density functional theory (DFT) method was used to examine the gas phase and THF solvated structures of these compounds. The calculations showed that each of the compounds forms dimers or higher aggregates in the gas phase. Aggregates are also formed in THF solution, although solvation favors lower aggregates as compared to the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号