首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《先进技术聚合物》2018,29(2):860-866
The exploration of green flame retardants is of great significance for fire safety, ecological environment protection, and resource saving. Herein, a novel phosphorus containing chitosan‐cobalt complex (CS‐P‐Co) was successfully synthesized for the first time and then introduced into polylactic acid matrix. Owning to the formation of cobalt salts, the CS‐P‐Co exhibits good thermal stability and catalytic char effect. The as‐fabricated biodegradable polylactic acid/CS‐P‐Co composites with small amounts of CS‐P‐Co (≤ 4.0 wt%) show remarkably improved flame retardancy, such as decreased peak heat release rate and total heat release by 23.0% and 20.0%, respectively. Scanning electron microscopy, Thermogravimetric analysis, and Raman results demonstrate that compact graphitized char layers are formed on the composite surface during combustion, attributed to the catalytic effect of CS‐P‐Co. The char inhibits diffusion of heat, mass, and oxygen, which plays a key role in the flame retardancy enhancement.  相似文献   

2.
《先进技术聚合物》2018,29(10):2665-2673
A phosphazene derivative flame retardant with a highly cross‐linked microsphere structure, named poly(cyclotriphosphazene‐c‐sulfonyldiphenol) (PCPS) microspheres, were synthesized by 1‐pot reaction and then applied on flame retarded epoxy (EP) resin. The microstructure and chemical composition of PCPS microspheres were characterized using scanning electron microscopy, transmission electron microscopy, and element mapping. The thermal stability of PCPS microspheres and PCPS/EP composites was explored through thermogravimetric analysis. Thermogravimetric data showed that the PCPS microspheres have excellent thermal stability, and the char yield is about 43% at the end of 800°C. The incorporation of PCPS microspheres significantly increased the char yield of PCPS/EP composites. The flammability was investigated by limited oxygen index tests and cone calorimeter. The limited oxygen index value of PCPS/EP composite was increased to 29.8 from 26.6 when 3 wt% of PCPS microspheres was added. Compared with neat EP, the flame retardancy was greatly improved. The peak heat release rate and smoke production rate of PCPS/EP composites were reduced by 45.0% and 43.6%, respectively. The mechanical properties including tensile strength and modulus were both improved due to the enhancement of PCPS microspheres. The PCPS microspheres act as a dual function for improving both the flame resistance and mechanical strength of PCPS/EP system.  相似文献   

3.
Three commercialized flame retardants, 1,2‐bis(diphenylphosphinoyl)ethane (EDPO), 6,6‐(1,2‐phenethyl)bis‐6H‐dibenz[c,e][1,2]oxaphosphorin‐6,6‐dioxide (HTP‐6123), and hexa‐phenoxy‐cyclotriphosphazene (HPCTP), were used to prepare the flame retardant diglycidyl ether of bisphenol A (DGEBA) epoxy resin (EP) under the same experimental conditions. The effects of Tg, thermal stability, and water absorption properties of EP caused by the three flame retardants were investigated and compared, together with their flame retardant efficiency. Results showed that the introduction of the three flame retardants improved the flame retardant performance of EP but led to decreases in Tg and decomposition temperature. EDPO showed higher flame retardant efficiency than the other two flame retardants. EP/EDPO showed higher thermal stability, better flame retardant performance, higher Tg value, and lower water absorption than EP/HTP‐6123 and EP/HPCTP. The study discovered that EDPO and HTP‐6123 primarily act through the gas phase flame retardant mechanism, while HPCTP is primarily driven by the condensed phase mechanism.  相似文献   

4.
《先进技术聚合物》2018,29(4):1242-1254
Extensive application of epoxy resins (EPs) is highly limited by their intrinsic flammability. Combining EPs with nanoparticles and phosphorus‐nitrogen flame retardants is an effective approach to overcome the drawback. In this work, simultaneous incorporation of octa‐aminophenyl polyhedral oligomeric silsesquioxanes (OapPOSS) and polyphosphazene into EP was reported for the first time. Significantly, reduced peak of heat release rate and UL‐94 V‐0 rating were achieved by tuning suitable ratios of polyphosphazene and OapPOSS for EP composites. During combustion, polyphosphazene promoted char formation and released nonflammable gases such as CO2, NH3, and N2 to dilute oxygen concentration and cool pyrolysis zone. Moreover, numerous phosphorus‐containing species acting as free radical scavengers were generated during degradation. Silicon dioxide evolving from OapPOSS protected char residues from thermal degradation. This study provides a novel method to fabricate high‐performance flame‐retardant EP composites, which have potential applications in the field of electrics and electronics.  相似文献   

5.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

6.
A novel phosphorus‐containing compound diphenyl‐(1, 2‐dicarboxylethyl)‐phosphine oxide defined as DPDCEPO was synthesized and used as a flame retardant curing agent for epoxy resins (EP). The chemical structure of the prepared DPDCEPO was well characterized by Fourier transform infrared spectroscopy, and 1H, 13C and 31P nuclear magnetic resonance. The DPDCEPO was mixed with curing agent of phthalic anhydride (PA) with various weight ratios into epoxy resins to prepare flame retardant EP thermosets. The flame retardant properties, combustion behavior and thermal analysis of the EP thermosets were respectively investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimeter measurement, dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of the char residues for EP thermosets were respectively investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS). The water resistant properties of the cured EP were evaluated by putting the samples into distilled water at 70°C for 168 hr. The results revealed that the EP/20 wt% DPDCEPO/80 wt% PA thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.2%. The cone test results revealed that the incorporation of DPDCEPO effectively reduced the combustion parameters of the epoxy resin thermosets, such as heat release rate and total heat release. The dynamic mechanical thermal analysis test demonstrated that the glass transition temperature (Tg) decreased with the increase of DPDCEPO content. The TGA results indicated that the incorporation of DPDCEPO promoted the decomposition of epoxy resin matrix ahead of time and led to a higher char yield and thermal stability at high temperatures. The surface morphological structures and analysis of the XPS of the char residues of EP thermosets revealed that the introduction of DPDCEPO benefited the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resin material surface during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After water resistance tests, the EP/20 wt% DPDCEPO/80 wt% PA thermosets retained excellent flame retardancy, and the moisture adsorption of the EP thermosets decreased with the increase of DPDCEPO content in EP thermosets because of the existence of the P–C bonds and the rigid aromatic hydrophobic structure in DPDCEPO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel mono‐component intumescent flame retardant named pentaerythritol phosphate melamine salt (PPMS)‐hybrid bismuth oxide (PPMS‐Bi2O3) was synthesized and carefully characterized by FTIR, 1H NMR, 31P NMR, SEM‐EDS, and TG analyses. Then, PPMS‐Bi2O3 was utilized as flame retardant for epoxy resins (EPs), and the thermal stability, flame retardancy, and smoke suppression properties of EP composites were investigated. TG results show that PPMS‐Bi2O3 is more conducive to enhance the thermal stability and char forming ability of EP composites compared with the same addition of PPMS or the mixture of PPMS and Bi2O3, and this positive effect is enhanced with the increasing Bi2O3 content. Cone calorimeter test reveals that the PPMS‐Bi2O3 can effectively reduce the heat release and smoke production in comparison with PPMS or the mixture of PPMS and Bi2O3 due to the formation of a more compact and intumescent char against fire, as judged by digital photographs and SEM images. EDS analysis indicates that the combination PPMS and Bi2O3 by hydrogen bonds promotes to generate more phosphorus‐rich and aromatization structures in the condensed phase that enhance the barrier effect and anti‐oxidation ability of the char, thus imparting higher flame retardant and smoke suppression efficiencies to EP composites.  相似文献   

8.
Thirteen phosphorus-containing flame retardants were synthesized in this work. The solubilities of flame retardant [(6-oxide-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-methyl]-butanedioic acid (DDP) in selected solvents are measured. TGA measurements of the 13 phosphorus-containing flame retardants were carried out and thermal stabilities of three flame-resistant PET (FRPET) resins were investigated. A FRPET incorporated by DDP with terephthalic acid and ethylene glycol reported in literature was also discussed and compared. The thermal stability of the FRPET is improved by the incorporation of phosphorus-containing flame retardants. The LOI values of all phosphorus-containing polyesters are higher than 27%. The improvement of the flame-resistant ability is due to the formation of the char that is not only caused by the existence of phosphorus elements in the resin but also by the relative large number of carbon atoms of the phenyl group in the flame retardants.  相似文献   

9.
A novel inorganic and organic composite flame retardant (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide [DOPO]–layered double hydroxide [LDH]) was synthesized via grafting DOPO with organic‐modified Mg/Al‐LDH, which was introduced into poly (methyl methacrylate) (PMMA) resin to prepare the flame‐retardant PMMA composites. Thermogravimetric analyzer (TGA) showed that the T‐50% of DOPO‐LDH/PMMA composites enhanced by about 20°C, and with the 20% flame retardant, the residual char content can be increased by 39.8% in the air atmosphere compared with LDH/PMMA composites. In the UL‐94 and the limiting oxygen index (LOI) tests, it can be found that compared with LDH/PMMA composites, the LOI value of DOPO‐LDH/PMMA composites were raised evidently with the increased flame retardants, and the droplet combustion was greatly improved. These results could be ascribed to the action of DOPO free‐radical, catalytic charring of polymer and the effect of LDH physical barrier. Moreover, the novel DOPO‐LDH not only given PMMA a good flame‐retardant property and thermal stability, but also have higher visible light transmittance, ultraviolet‐shielding effect, and low loss of mechanical properties, which could further facilitate the wide application of inorganic environment‐friendly flame retardants in general resins and engineering resins and broaden the application of polymers.  相似文献   

10.
In order to improve the flame retardant of polylactide (PLA), the synergistic effect of graphitic carbon nitride (g‐C3N4) with commercial‐available flame retardants melamine pyrophosphate (MPP) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was investigated. The PLA composites containing 5 wt% g‐C3N4 and 10 wt% DOPO had a highest limited oxygen index (LOI) value of 29.5% and reached the V‐0 rating of UL‐94 test. The cone calorimeter tests exhibited that DOPO had a better synergistic effect with g‐C3N4 than MPP to improve flame retardancy of PLA. The peak heat release rate (pHRR) and total heat release (THR) of PLA composites containing 10 wt% DOPO could be reduced by 25.2% and 23.6%, respectively, as compared with those of pure PLA. The presence of rich phosphorus element and aromatic groups in DOPO contributed to obtain continuous compact char layer and increase the graphitization level of char residues, thereby, resulting in improving the flame retardancy of PLA together with g‐C3N4. In addition, the incorporation of DOPO can serve as a plasticizer to reduce the complex viscosity, improving the processability of PLA composites.  相似文献   

11.
The objective of the study was to investigate the effect of the organo‐modified nanosepiolite (ONSep) on improving the fire safety of polypropylene (PP). The composites based on PP, flame retardant master batch (MB‐FR, 25 wt% PP+50 wt% decabromodiphenyl ether (DBDPE)+25% antimony trioxide (ATO)) and ONSep were prepared via melt blending. The results of the limiting oxygen index (LOI) and vertical burning rating (UL‐94) test indicated that PP/40 wt% MB composites had no rating with seriously dripping phenomenon, while the LOI value was only 22.5. However, as 4 wt% ONSep was added in PP/40 wt% MB composites, the composites achieved UL94 V‐0 rating and the LOI value was 24.3. In comparison, PP/50 wt% MB composites could not reach the V‐0 rating either. The TGA results revealed that the addition of ONSep enhanced the thermal stability of the PP/MB‐FR composites. The cone calorimeter results indicated that the heat release rate, average mass loss rate, smoke production rate and smoke temperature of the PP/40 wt% MB‐FR/4 wt% ONSep composites decreased in comparison with those of PP/40 wt% MB‐FR composites. Simultaneously, the Young modulus and impact strength were also much better improved with the increase of ONSep loading. Therefore, the synergistic flame retardancy of ONSep in PP/MB‐FR matrix significantly containing a halogen based flame retardant (DBDPE) significantly improved the fire safety and mechanical properties of the composites, and allowed to decrease the total amount of brominated fire retardants.  相似文献   

12.
《先进技术聚合物》2018,29(4):1294-1302
For the sake of improving the flame retardancy of epoxy resin (EP), a novel phosphorus‐containing phenolic resin (PPR) synthesized in our group instead of conventional phenolic resin (PR) was used to cure EP in the present research. The curing processes and the corresponding crosslinking structure and mechanical performance were investigated by differential scanning calorimeter and dynamic mechanical thermal analysis. Because of the introduction of flame‐retarding elements including P and Si, PPR exhibited higher charring capacity in the condensed phase, which is helpful to construct a char layer of higher quality. Correspondingly, PPR‐cured EP displayed remarkably improved flame retardance as compared to conventional PR‐cured EP through the related evaluations including limiting oxygen index, vertical burning test, and microscale combustion colorimeter. As a multifunction agent, it is believable that PPR possesses potential commercial value to prepare flame‐retardant EP with high performance.  相似文献   

13.
In this work, kaolinite (K) was firstly converted to one kind of microporus aluminosilicate (4A) by a green andeconomical method, which was thenacted as the precursor to synthesize two other microporus aluminosilicate (3A and 5A) by ions exchange. After modified and loaded with one kind of rare earth ion (La3+), the final product (A‐La) was then used as synergist to enhance fire retardant property for polypropylene (PP) with intumescent flame‐retardants (IFR). The properties of PP composites for thermal stability and flame retardant were studied and demonstrated that A‐La, especially 4A‐La, had the most obviously flame‐retardant effect. Meanwhile, the macro/micro‐structure of char residues and real‐time fourier transform infrared spectroscopy (FTIR) after heating also showed that A‐La were helpful to promote the formation of homogenous and compact intumescent char layer. This dense carbon layer can effectively control the convection of combustion gases mixture, and heat transfer between underlying matrix and outside environment.  相似文献   

14.
采用原位聚合法制备了蜜胺树脂(MF)和环氧树脂(EP)双层包裹聚磷酸铵(APP),得到一种新型核壳结构的微胶囊阻燃剂(EMFAPP).用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对微胶囊的核壳结构进行了表征;用极限氧指数(LOI)、垂直燃烧等级测试(UL 94)对EMFAPP在EP中的阻燃性能进行了研究.EMFAPP在EP基体中阻燃性能优异,当其添加量大于7%时EP/EMFAPP均通过UL 94 V-0级,LOI值达27.0%以上.与未包裹APP相比,EMFAPP耐水性明显提高;经水处理(75℃,6天)后,EMFAPP/EP仍可保持良好的阻燃性能.采用热重分析对EMFAPP及其阻燃复合物的热降解行为进行了研究,EMFAPP能够促进成炭,EP/EMFAPP(8 wt%)在700℃残炭率达16.2%,但其低温稳定性有所下降.此外,利用热失重-红外联用对EMFAPP/EP的热降解行为进行了研究,探讨相关阻燃机理.  相似文献   

15.
《先进技术聚合物》2018,29(1):497-506
A novel phosphorus‐containing, nitrogen‐containing, and sulfur‐containing reactive flame retardant (BPD) was successfully synthesized by 1‐pot reaction. The intrinsic flame‐retardant epoxy resins were prepared by blending different content of BPD with diglycidyl ether of bisphenol‐A (DGEBA). Thermal stability, flame‐retardant properties, and combustion behaviors of EP/BPD thermosets were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The flame‐retardant mechanism of BPD was studied by TGA/infrared spectrometry (TGA‐FTIR), pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS), morphology, and chemical component analysis of the char residues. The results demonstrated that EP/BPD thermosets not only exhibited outstanding flame retardancy but also kept high glass transition temperature. EP/BPD‐1.0 thermoset achieved LOI value of 39.1% and UL94 V‐0 rating. In comparison to pure epoxy thermoset, the average of heat release rate (av‐HRR), total heat release (THR), and total smoke release (TSR) of EP/BPD‐1.0 thermoset were decreased by 35.8%, 36.5% and 16.5%, respectively. Although the phosphorus content of EP/BPD‐0.75 thermoset was lower than that of EP/DOPO thermoset, EP/BPD‐0.75 thermoset exhibited better flame retardancy than EP/DOPO thermoset. The significant improvement of flame retardancy of EP/BPD thermosets was ascribed to the blocking effect of phosphorus‐rich intumescent char in condensed phase, and the quenching and diluting effects of abundant phosphorus‐containing free radicals and nitrogen/sulfur‐containing inert gases in gaseous phase. There was flame‐retardant synergism between phosphorus, nitrogen, and sulfur of BPD.  相似文献   

16.
Nano (Fe)MIL-101 particles were grafted on the short carbon fibers (SCFs) by in situ growth method to prepare (Fe)MIL-101@SCFs. The flame-retarded composites of epoxy resin (EP) were fabricated with combination of (Fe)MIL-101@SCFs and ammonium polyphosphate (APP). The composites showed good flame retardancy, smoke suppression, and mechanical properties simultaneously. The main heat release rate peak of the flame-retarded composites was reduced and delayed evidently in comparison with pristine EP. The high amount of residual char with coherent and dense structure was formed owing to the catalytic char formation of (Fe)MIL-101 as well as the strengthening action of SCF. The improvement in mechanical properties of the flame-retarded composite was due to the reinforcement effects of (Fe)MIL-101@SCFs and its action of interfacial adjustment. This research solved the contradiction between the flame retardancy and mechanical properties of EP, and proposed a new method to prepare the mechanically reinforced and flame retardant EP.  相似文献   

17.
A novel activated carbon spheres (ACS)@SnO2@NiO hierarchical hybrid architecture was first synthesized and applied for enhancing the flame retardancy of epoxy (EP) resin via a cooperative effect. Herein, using activated carbon microspheres as the template, SnO2 and NiO nanospheres were successively anchored to it by a sedimentation‐calcination strategy. The well‐designed ACS@SnO2@NiO significantly enhanced the flame retardancy for consistency of EP composites, as demonstrated by thermogravimetric and cone calorimeter experiments. For instance, the incorporation of 2 wt% ACS@SnO2@NiO decreased by 15.5% maximum in the total smoke production, accompanying the higher graphitized char layer. In addition, the synergetic mechanism of flame retardancy between ACS@SnO2@NiO and aluminum hypophosphite (AHP) was investigated. The obtained sample satisfied the UL‐94 V‐0 rating with a 5.0 wt% addition of AHP and ACS@SnO2@NiO (the ratio of the mass fraction of AHP to ACS@SnO2@NiO is 4.5:0.5). Notably, the incorporation of AHP and ACS@SnO2@NiO resulted in a significant decrease in the fire hazard properties of EP resin; for instance, 4.5AHP‐0.5ACS@SnO2@NiO/EP resulted in a maximum decrease of 32.4% in the total smoke production as compared with that of pure EP resin. It should be noted that the improved flame‐retardant performance for the EP composites is primarily attributed to the synergistic effect of ACS@SnO2@NiO and AHP in promoting the formation of residual char in the condensed phase.  相似文献   

18.
以三氯氧磷和双酚A为原料制备了具有超支化结构的聚磷酸酯阻燃剂(HPPEA),通过红外(FTIR),核磁(1H-NMR,31P-NMR)及热重分析表征了产物的结构和热稳定性.将HPPEA与三聚氰胺聚磷酸盐(MPP)进行复配,通过熔融共混法制备阻燃尼龙6,通过氧指数法和垂直燃烧法测试了其阻燃性能,采用热重分析(TGA)研究...  相似文献   

19.
《先进技术聚合物》2018,29(2):785-794
A study on the influence of flame‐retardant types, poly(butylene succinate) (PBS) contents, and combination of flame retardant and PBS on the mechanical, thermal, morphological, and flame retardancy properties of polylactide (PLA) and PLA/PBS blends was investigated. Blending of PLA, PBS, and flame retardant was prepared by a twin screw extruder. Tricresyl phosphate (TCP) and montmorillonite (MMT) were used as a flame retardant, whereas PBS acted as a flexible material for enhancing the fire resistance and toughness of PLA, respectively. The results revealed that the introducing of TCP and MMT greatly improved the impact strength of the PLA. The impact toughness of PLA blends with 20 wt% of PBS increased to about 244% that of neat PLA. The addition of flame retardants markedly improved the limiting oxygen index of PLA from 18.0% to 30.1% and 24.3% for the blends containing TCP and MMT. The V‐0 rating in UL‐94 testing was achieved with PLA/TCP blend. Elongation at break, impact toughness, and thermal stability of PLA significantly increased with the increment of PBS concentration. The synergistic effect of flame retardant and PBS afforded the PLA blends with outstanding increase of impact resistance. Furthermore, the flame retardant of TCP in the system not only affected dripping behavior and total flame time of PLA/PBS blends but also improved limiting oxygen index values due to the forming of char layer and inhibiting of burning mechanism.  相似文献   

20.
Low flame retardant efficiency is a key bottleneck for currently available retardants against the flammable polypropylene (PP). Herein, the organically modified montmorillonite (OMMT) was utilized as a synergist for our previously reported intumescent flame retardant (IFR) that was constructed from ammonium polyphosphate (APP) and hyperbranched charring foaming agent (HCFA) to further enhance the retardant efficiency against PP. The resultant's combustion behavior was thoroughly investigated by cone calorimetry, limiting oxygen index (LOI), vertical burning test (UL‐94), and scanning electron microscopy (SEM). The results showed that 20% addition of IFR with OMMT showed a positive effect and improved the flame retardancy of the PP systems. Especially, addition of 2 wt% OMMT obviously increased the LOI values of PP systems with 20% total loading flame retardants from 29% to 31.5% and the samples meet V‐0 rating as well as the reduction of the heat release rate (HRR), total heat release (THR), CO2, and CO production occurred. On the other hand, the SEM images were also revealed that OMMT initiated a dense and strong char on the surface of the material, which resulted in efficient flame retardancy of PP matrix during combustion. In addition, thermal degradation behavior discussed by thermogravimetric analysis (TGA) indicated that OMMT could improve the thermal stability of PP systems under high temperature, and promoted char residues of PP/IFR systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号