首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In this study, detonation cell sizes of methanol–oxygen mixtures are experimentally measured at different initial pressures and compositions. Good agreement is found between the experiment data and predictions based on the chemical length scales obtained from a detailed chemical kinetic model. To assess the detonation sensitivity in methanol–oxygen mixtures, the results are compared with those of hydrogen–oxygen and methane–oxygen mixtures. Based on the cell size comparison, it is shown that methanol–oxygen is more detonation sensitive than methane–oxygen but less sensitive than hydrogen–oxygen.  相似文献   

3.
In this paper, we present a novel approach to quantify regular or chaotic dynamics of either smooth or non-smooth dynamical systems. The introduced method is applied to trace regular and chaotic stick–slip and slip–slip dynamics. Stick–slip and slip–slip periodic and chaotic trajectories are analyzed (for the investigated parameters, a stick–slip dynamics dominates). Advantages of the proposed numerical technique are given.  相似文献   

4.
A resent extension of the nonlinear K–ε model is critically discussed from a basic theoretical standpoint. While it was said in the paper that this model was formulated to incorporate relaxation effects, it will be shown that the model is incapable of describing one of the most basic such turbulent flows as is obvious but is described for clarity. It will be shown in detail that this generalized nonlinear K–ε model yields erroneous results for the Reynolds stress tensor when the mean strains are set to zero in a turbulent flow – the return-to-isotropy problem which is one of the most elementary relaxational turbulent flows. It is clear that K–ε type models cannot describe relaxation effects. While their general formalism can describe relaxation effects, the nonlinear K–ε model – which the paper is centered on – cannot. The deviatoric part of the Reynolds stress tensor is predicted to be zero when it actually only gradually relaxes to zero. Since this model was formulated by using the extended thermodynamics, it too will be critically assessed. It will be argued that there is an unsubstantial physical basis for the use of extended thermodynamics in turbulence. The role of Material Frame-Indifference and the implications for future research in turbulence modeling are also discussed. Received 19 February 1998 and accepted 23 October 1998  相似文献   

5.
We establish a Navier–Stokes–Fourier limit for solutions of the Boltzmann equation considered over any periodic spatial domain of dimension two or more. We do this for a broad class of collision kernels that relaxes the Grad small deflection cutoff condition for hard potentials and includes for the first time the case of soft potentials. Appropriately scaled families of DiPerna–Lions renormalized solutions are shown to have fluctuations that are compact. Every limit point is governed by a weak solution of a Navier–Stokes–Fourier system for all time.  相似文献   

6.
In this study, four different versions of the variable metric method (VMM) are investigated in solving standard one-dimensional inverse heat conduction problems in order to evaluate their efficiency and accuracy. These versions include Davidon–Fletcher–Powell (DFP), Broydon–Fletcher–Goldfarb–Shanno (BFGS), Symmetric Rank-one (SR1), and Biggs formula of the VMM. These investigations are carried out using temperature data obtained from numerical simulations.  相似文献   

7.
The Galerkin–Bubnov method with global approximations is used to find approximate solutions to initial–boundary-value creep problems. It is shown that this approach allows obtaining solutions available in the literature. The features of how the solutions of initial–boundary-value problems for oneand three-dimensional models are found are analyzed. The approximate solutions found by the Galerkin–Bubnov method with global approximations is shown to be invariant to the form of the equations of the initial–boundary-value problem. It is established that solutions of initial–boundary-value creep problems can be classified according to the form of operators in the mathematical problem formulation  相似文献   

8.
In this article we present a Ladyženskaja–Prodi–Serrin Criteria for regularity of solutions for the Navier–Stokes equation in three dimensions which incorporates weak L p norms in the space variables and log improvement in the time variable.  相似文献   

9.
Quan Chen 《Rheologica Acta》2012,51(4):343-355
Cyclic block copolymer is a special type of block copolymer having no free ends. Comparison of the dynamic behavior between cyclic and linear block copolymers enables an understanding of the role of chain ends in dynamics of the latter. In relation to this point, analysis was made on the conformational dynamics for a cyclic bead-spring type diblock copolymer chain, AoB, under the steady shear flow. Further comparison was made on the conformational behavior of the AoB chain and that of two symmetric linear triblock copolymer chains, A–B–A and B–A–B. For these chains, the mobility was set to be higher for the A segments than the B segments. Thus, for the AoB chain under the steady shear flow, the segments of the A block exhibit less orientational anisotropy than those of the B block. This orientational contrast is enhanced for the A–B–A chain partly because the constraint for the motion of the segments is less near the chain ends than near the chain center. Nevertheless, for the B–A–B chain, the segmental orientation over the A block becomes more anisotropic than that over the B block. Detailed analysis shows that this result is attributable to a high orientational correlation for the segments of two end B blocks, in particularly for those near the block junctions. The correlated B segments exert a tensile force on the A block thereby significantly enhancing the orientational anisotropy of the A segments.  相似文献   

10.
The Bouc–Wen model for smooth hysteresis has received an increasing interest in the last few years due to the ease of its numerical implementation and its ability to represent a wide range of hysteresis loop shapes. This model consists of a first-order nonlinear differential equation that contains some parameters that can be chosen, using identification procedures, to approximate the behavior of given physical hysteretic system. Despite a large body of literature dedicated to the Bouc–Wen model, the relationship between the parameters that appear in the differential equation and the shape of the obtained hysteresis loop is little understood. The objective of this paper is to fill this gap by analytically exploring this relationship using a new form of the model called the normalized one. The mathematical framework introduced in this study formalizes the vague notion of “loop shape" into precise quantities whose variation with the Bouc–Wen model parameters is analyzed. In light of this analysis, the parameters of Bouc–Wen model are re-interpreted.  相似文献   

11.
This paper presents hybrid Reynolds-averaged Navier–Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid methods studied in this work include the detached eddy simulation (DES) based on Spalart–Allmaras (S–A), Menter’s k–ω shear-stress-transport (SST) and k–ω with weakly nonlinear eddy viscosity formulation (Wilcox–Durbin+, WD+) models and the zonal-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower–upper symmetric-Gauss–Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows. The project supported by the National Natural Science Foundation of China (10502030 and 90505005).  相似文献   

12.
P. Kosinski 《Shock Waves》2006,15(1):13-20
The problem of wave propagation in a dust–air mixture inside a branched channel has not been studied widely in literature, even though this topic has many important applications especially in process safety (dust explosions). In this paper, a shock wave interaction with a cloud of solid particles, and the further behaviour of both gas and particulate phases were studied using numerical techniques. The geometry mimicked a real channel where bends or branches are common. Two numerical approaches were used: Eulerian–Eulerian and Eulerian–Lagrangian. Using Eulerian-Lagrangian simulation, it was possible to include the effects of particle–particle and particle–wall collisions in a realistic and direct manner. Results are mainly shown as snap-shots of particle positions during the simulations and statistics for the particle displacement. The results show that collisions significantly influence the process of particle cloud formation. PACS47.40.Nm, 02.60.Cb, 47.55.kf  相似文献   

13.
Using thermochemical code calculations, we show that the nanographite–nanodiamond phase transition, which may occur in the detonation products of a number of carbon containing explosives, can affect the detonation properties and can cause a specific detonation regime with some unusual peculiarities. Among them, we first note the failure of the Chapman–Jouguet condition and the presence of the sonic plane, where the Mach number is equal to unity, in a detonation product expansion wave at a lower pressure than that at the Chapman–Jouguet point. The peculiarities of this detonation regime are demonstrated by the example of TNT, HNS, and RDX. The computed detonation velocities are in excellent agreement with experiments over a wide range of initial charge densities for all of the investigated explosives. The results of this work allow one to explain, e.g., contradictory experimental data on the detonation pressure and on the length of the reaction zone for TNT. We believe that some other solid–solid, solid–liquid, and liquid–liquid phase transformations in the detonation products may also cause a detonation regime with the same features as shown here for the nanographite–nanodiamond transition. We suggest a computational study that should facilitate proposing detonation experiments strongly arguing in favor of the model presented. PACS 47.40.-x; 47.40.Rs; 64.70.-p; 64.70.Kb; 05.70.-a; 05.70-.CeThis paper was based on the work that was presented at the 19th International Colloquium on the Dynamics of Explosions and Reactive Systems, Hakone, Japan, July 27–August 1, 2003.  相似文献   

14.
The propagation mechanism of high speed turbulent deflagrations   总被引:2,自引:0,他引:2  
J. Chao  J.H.S. Lee 《Shock Waves》2003,12(4):277-289
The propagation regimes of combustion waves in a 30 cm by 30 cm square cross–sectioned tube with an obstacle array of staggered vertical cylindrical rods (with BR=0.41 and BR=0.19) are investigated. Mixtures of hydrogen, ethylene, propane, and methane with air at ambient conditions over a range of equivalence ratios are used. In contrast to the previous results obtained in circular cross–sectioned tubes, it is found that only the quasi–detonation regime and the slow turbulent deflagration regimes are observed for ethylene–air and for propane–air. The transition from the quasi–detonation regime to the slow turbulent deflagration regime occurs at (where D is the tube “diameter” and is the detonation cell size). When , the quasi–detonation velocities that are observed are similar to those in unobstructed smooth tubes. For hydrogen–air mixtures, it is found that there is a gradual transition from the quasi–detonation regime to the high speed turbulent deflagration regime. The high speed turbulent deflagration regime is also observed for methane–air mixtures near stoichiometric composition. This regime was previously interpreted as the “choking” regime in circular tubes with orifice plate obstacles. Presently, it is proposed that the propagation mechanism of these high speed turbulent deflagrations is similar to that of Chapman–Jouguet detonations and quasi-detonations. As well, it is observed that there exists unstable flame propagation at the lean limit where . The local velocity fluctuates significantly about an averaged velocity for hydrogen–air, ethylene–air, and propane–air mixtures. Unstable flame propagation is also observed for the entire range of high speed turbulent deflagrations in methane–air mixtures. It is proposed that these fluctuations are due to quenching of the combustion front due to turbulent mixing. Quenched pockets of unburned reactants are swept downstream, and the subsequent explosion serves to overdrive the combustion front. The present study indicates that the dependence on the propagation mechanisms on obstacle geometry can be exploited to elucidate the different complex mechanisms of supersonic combustion waves. Received 5 November 2001 / Accepted 12 June 2002 / Published online 4 November 2002 Correspondence to: J. Chao (e-mail: jenny.chao@mail.mcgill.ca) An abridged version of this paper was presented at the 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Seattle, USA, from July 29 to August 3, 2001.  相似文献   

15.
It is known that best constants and extremals of many geometric inequalities can be obtained via the Monge–Kantorovich theory of mass transport. But so far this approach has been successful for a special subclass of the Gagliardo–Nirenberg inequalities, namely, those for which the optimal functions involve only power laws. In this paper, we explore the link between Mass transport theory and all classes of the Gagliardo–Nirenberg inequalities. Sharp constants and optimal functions of all the Gagliardo–Nirenberg inequalities are obtained explicitly in dimension n = 1, and the link between these inequalities and Mass transport theory is discussed.  相似文献   

16.
In this study, we carried out a numerical simulation of transient heat transfer in a composite passive system consisting of air–phase change material–air, arranged as a rectangular enclosure. The vertical boundaries of the enclosure are isothermal and the horizontal ones adiabatic. The enthalpy formulation with a fixed grid is used to study the process of phase change with liquid–solid interface zone controlled by natural convection. The flow in this zone is simulated by a model based on the Darcy porous medium. The numerical solution of the mathematical model is done using finite difference–control volume algorithm. The influence of the geometrical and thermal parameters is studied. It is found that subcooling coefficient is the most important parameter influencing heat transfer, and for a given subcooling, there is an optimum phase change partition thickness.  相似文献   

17.
Different from the approaches used in the earlier papers, in this paper, the Halanay inequality technique, in combination with the Lyapunov method, is exploited to establish a delay-independent sufficient condition for the exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays and reaction–diffusion terms. Moreover, for the deterministic delayed Cohen–Grossberg neural networks, with or without reaction–diffusion terms, sufficient criteria for their global exponential stability are also obtained. The proposed results improve and extend those in the earlier literature and are easier to verify. An example is also given to illustrate the correctness of our results.  相似文献   

18.
This article deals with the dynamic analysis of train–track–bridge interaction system using the finite element method. In this interaction system, each four-wheelset vehicle in the train is modeled by a mass–spring–damper system with 10 degrees of freedom; the rails and the bridge decks are modeled as a number of Bernoulli–Euler beam elements, while the elasticity and damping properties of the rail bed are represented by continuous springs and dampers. The equation of motion for the interaction system is presented in matrix form with time-dependent coefficients. The correctness of the proposed procedure is illustrated by a comparison with the numerical result from the existing literature. Several numerical examples are chosen to investigate the effect of two types of vehicle models, two types of bridge models and three damping values of bridge on the maximum dynamic responses of train, track and bridges.  相似文献   

19.
This short note completes the symmetry analysis of a class of quasi-linear partial differential equations considered in the previous paper (Nonlinear Dynamics 51: 309–316, 2008): it deals with an “exceptional” Lie point symmetry which is admitted only if the involved parameters are fixed by precise relationships. The peculiarity of this symmetry is enhanced by the fact that, combined with the presence of a conditional symmetry of “weak” type, it leads to a family of solutions which include, as a particular case, a relevant solution of the Grad–Schlüter–Shafranov equation, well known in plasma physics.  相似文献   

20.
In this paper, we will consider the modelling of problems in linear elasticity on thin plates by the models of Kirchhoff–Love and Reissner–Mindlin. A fundamental investigation for the Kirchhoff plate goes back to Morgenstern (Arch. Ration. Mech. Anal. 4:145–152, 1959) and is based on the two-energies principle of Prager and Synge. This was half a century ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号