首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The theory of thin wires developed in Dret and Meunier (Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 337:143–147, 2003) is adapted to phase-transforming materials with large elastic moduli in the sense discussed in James and Rizzoni (J Elast 59:399–436, 2000). The result is a one-dimensional constitutive model for shape memory wires, characterized by a small number of material constants. The model is used to analyze self-accommodated and detwinned microstructures and to study superelasticity. It also turns out that the model successfully reproduces the behavior of shape memory wires in experiments of restrained recovery (Tsoi et al. in Mater Sci Eng A 368:299–310, 2004; Tsoi in 50:3535–3544, 2002; S̆ittner et al. in Mater Sci Eng A 286:298–311, 2000; vokoun in Smart Mater Struct 12:680–685, 2003; Zheng and Cui in Intermetallics 12:1305–1309, 2004; Zheng et al. in J Mater Sci Technol 20(4):390–394, 2004). In particular, the model is able to predict the shift to higher transformation temperatures on heating. The model also captures the effect of prestraining on the evolution of the recovery stress and of the martensite volume fraction.  相似文献   

2.
External heat transfer prediction is performed in two-dimensional turbine blade cascades using the Reynolds-averaged Navier–Stokes equations. For this purpose, six different turbulence models including the algebraic Baldwin–Lomax (AIAA paper 78-257, 1978), three low-Re k−ɛ models (Chien in AIAA J 20:33–38, 1982; Launder and Sharma in Lett Heat Mass Transf 1(2):131–138, 1974; Biswas and Fukuyama in J Turbomach 116:765–773, 1994), and two k−ω models (Wilcox in AIAA J 32(2):247–255, 1994) are taken into account. The computer code developed employs a finite volume method to solve governing equations based on an explicit time marching approach with capability to simulate subsonic, transonic and supersonic flows. The Roe method is used to decompose the inviscid fluxes and the gradient theorem to decompose viscous fluxes. The performance of different turbulence models in prediction of heat transfer is examined. To do so, the effect of Reynolds and Mach numbers along with the turbulent intensity are taken into account, and the numerical results obtained are compared with the experimental data available.  相似文献   

3.
This paper is concerned with the decay structure for linear symmetric hyperbolic systems with relaxation. When the relaxation matrix is symmetric, the dissipative structure of the systems is completely characterized by the Kawashima–Shizuta stability condition formulated in Umeda et al. (Jpn J Appl Math 1:435–457, 1984) and Shizuta and Kawashima (Hokkaido Math J 14:249–275, 1985) and we obtain the asymptotic stability result together with the explicit time-decay rate under that stability condition. However, some physical models which satisfy the stability condition have non-symmetric relaxation term (for example, the Timoshenko system and the Euler–Maxwell system). Moreover, it had been already known that the dissipative structure of such systems is weaker than the standard type and is of the regularity-loss type (see Duan in J Hyperbolic Differ Equ 8:375–413, 2011; Ide et al. in Math Models Meth Appl Sci 18:647–667, 2008; Ide and Kawashima in Math Models Meth Appl Sci 18:1001–1025, 2008; Ueda et al. in SIAM J Math Anal 2012; Ueda and Kawashima in Methods Appl Anal 2012). Therefore our purpose in this paper is to formulate a new structural condition which includes the Kawashima–Shizuta condition, and to analyze the weak dissipative structure for general systems with non-symmetric relaxation.  相似文献   

4.
5.
Recently, the tube diameter relaxation time in the evolution equation of the molecular stress function (MSF) model (Wagner et al., J Rheol 49: 1317–1327, 2005) with the interchain pressure effect (Marrucci and Ianniruberto, Macromolecules 37:3934–3942, 2004) included was shown to be equal to three times the Rouse time in the limit of small chain stretch. From this result, an advanced version of the MSF model was proposed, allowing modeling of the transient and steady-state elongational viscosity data of monodisperse polystyrene melts without using any nonlinear parameter, i.e., solely based on the linear viscoelastic characterization of the melts (Wagner and Rolón-Garrido 2009a, b). In this work, the same approach is extended to model experimental data in shear flow. The shear viscosity of two polybutadiene solutions (Ravindranath and Wang, J Rheol 52(3):681–695, 2008), of four styrene-butadiene random copolymer melts (Boukany et al., J Rheol 53(3):617–629, 2009), and of four polyisoprene melts (Auhl et al., J Rheol 52(3):801–835, 2008) as well as the shear viscosity and the first and second normal stress differences of a polystyrene melt (Schweizer et al., J Rheol 48(6):1345–1363, 2004), are analyzed. The capability of the MSF model with the interchain pressure effect included in the evolution equation of the chain stretch to model shear rheology on the basis of linear viscoelastic data alone is confirmed.  相似文献   

6.
Nonlocal generalizations of Burgers’ equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185–202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3–4):1463–1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3–4):303–320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220–2240, 2011). In this article, we show how the verification of Hunter’s stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.  相似文献   

7.
A systematic application of the group analysis method for modeling fluids with internal inertia is presented. The equations studied include models such as the nonlinear one-velocity model of a bubbly fluid (with incompressible liquid phase) at small volume concentration of gas bubbles (Iordanski Zhurnal Prikladnoj Mekhaniki i Tekhnitheskoj Fiziki 3, 102–111, 1960; Kogarko Dokl. AS USSR 137, 1331–1333, 1961; Wijngaarden J. Fluid Mech. 33, 465–474, 1968), and the dispersive shallow water model (Green and Naghdi J. Fluid Mech. 78, 237–246, 1976; Salmon 1988). These models are obtained for special types of the potential function W(r,[(r)\dot],S){W(\rho,\dot \rho,S)} (Gavrilyuk and Teshukov Continuum Mech. Thermodyn. 13, 365–382, 2001). The main feature of the present paper is the study of the potential functions with W S  ≠ 0. The group classification separates these models into 73 different classes.  相似文献   

8.
This study presents the dynamic capillary pressure model (Hassanizadeh and Gray, Adv Water Resour 13:169–186, 1990; Water Resour Res 29:3389–3405, 1993) adapted for the needs of paper manufacturing process simulations. The dynamic capillary pressure–saturation relation is included in a one-dimensional simulation model for the pressing section of a paper machine. The one-dimensional model is derived from a two-dimensional model by averaging with respect to the vertical direction. Then, the model is discretized by the finite volume method and solved by Newton’s method. The numerical experiments are carried out for parameters typical for the paper layer. The dynamic capillary pressure–saturation relation shows significant influence on the distribution of water pressure. The behavior of the solution agrees with laboratory experiments (Beck, Fluid pressure in a press nip: measurements and conclusions, 1983).  相似文献   

9.
The paper discusses localized measurements that may be used to validate individual sub-models in mechanistic models of nucleate boiling on inclined surfaces with sliding bubbles. A previous study of wall temperature variations near isolated sliding bubbles by Kenning et al. (Multiphase Sci Technol 14:75–94, 2002), employing liquid crystal thermography, has been expanded in range and compared with recent studies by Qiu and Dhir (Exp Therm Fluid Sci 26:605–616, 2002) and Bayazit et al. (J Heat Transfer 125:503–509, 2003). The implications for modelling nucleate boiling are discussed.  相似文献   

10.
The paper considers the application of the method of direct separation of motions to the investigation of distributed systems. An approach is proposed which allows one to apply the method directly to the initial equation of motion and to satisfy all boundary conditions, arising for both slow and fast components of motion. The methodology is demonstrated by means of a classical problem concerning the so-called Indian magic rope trick (Blekhman et al. in Selected topics in vibrational mechanics, vol. 11, pp. 139–149, [2004]; Champneys and Fraser in Proc. R. Soc. Lond. A 456:553–570, [2000]; in SIAM J. Appl. Math. 65(1):267–298, [2004]; Fraser and Champneys in Proc. R. Soc. Lond. A 458:1353–1373, [2002]; Galan et al. in J. Sound Vib. 280:359–377, [2005]), in which a wire with an unstable upper vertical position is stabilized due to vertical vibration of its bottom support point. The wire is modeled as a heavy Bernoulli–Euler beam with a vertically vibrating lower end. As a result of the treatment, an explicit formula is obtained for the vibrational correction to the critical flexural stiffness of the nonexcited system.  相似文献   

11.
Nowadays, the largest Lyapunov exponent (LLE) is employed in many different areas of the scientific research. Thus, there is still need to elaborate fast and simple methods of LLE calculation. The new method of the LLE estimation is presented in this paper. The method (LLEDP) applies the perturbation vector and its derivative dot product to calculate Lyapunov exponent in the direction of disturbance. Value of this exponent is the LLE. The theoretical improvement was introduced. Results of the numerical simulations were shown and compared with the Stefański method (Stefański in Chaos Solitons Fractals 11(15):2443–2451, 2000; Stefański and Kapitaniak in Chaos Solitons Fractals 15:233–244, 2003; Stefański et al. in Chaos Solitons Fractals 23:1651–1659, 2005; Stefański in J. Theor. Appl. Mech. 46:665–678, 2008). Investigations of the Duffing oscillators with external excitation and three Duffing oscillators coupled in ring scheme without external excitation were made with use of the presented method. Fast time LLE estimation results convergence was shown.  相似文献   

12.
The goal of this article is to derive new estimates for the cost of observability of heat equations. We have developed a new method allowing one to show that when the corresponding wave equation is observable, the heat equation is also observable. This method allows one to describe the explicit dependence of the observability constant on the geometry of the problem (the domain in which the heat process evolves and the observation subdomain). We show that our estimate is sharp in some cases, particularly in one space dimension and in the multi-dimensional radially symmetric case. Our result extends those in Fattorini and Russell (Arch Rational Mech Anal 43:272–292, 1971) to the multi-dimensional setting and improves those available in the literature, namely those by Miller (J Differ Equ 204(1):202–226, 2004; SIAM J Control Optim 45(2):762–772, 2006; Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 17(4):351–366, 2006) and Tenenbaum and Tucsnak (J Differ Equ 243(1):70–100, 2007). Our approach is based on an explicit representation formula of some solutions of the wave equation in terms of those of the heat equation, in contrast to the standard application of transmutation methods, which uses a reverse representation of the heat solution in terms of the wave one. We shall also explain how our approach applies and yields some new estimates on the cost of observability in the particular case of the unit square observed from one side. We will also comment on the applications of our techniques to controllability properties of heat-type equations.  相似文献   

13.
We prove the global existence of solutions for a shape-memory alloys constitutive model at finite strains. The model has been presented in Evangelista et al. (Int J Numer Methods Eng 81(6):761–785, 2010) and corresponds to a suitable finite-strain version of the celebrated Souza–Auricchio model for SMAs (Auricchio and Petrini in Int J Numer Methods Eng 55:1255–1284, 2002; Souza et al. in J Mech A Solids 17:789–806, 1998). We reformulate the model in purely variational fashion under the form of a rate-independent process. Existence of suitably weak (energetic) solutions to the model is obtained by passing to the limit within a constructive time-discretization procedure.  相似文献   

14.
This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≧ 2. We address the question of the global existence of strong solutions for initial data close to a constant state having critical Besov regularity. First, this article shows the recent results of Charve and Danchin (Arch Ration Mech Anal 198(1):233–271, 2010) and Chen et al. (Commun Pure Appl Math 63:1173–1224, 2010) with a new proof. Our result relies on a new a priori estimate for the velocity that we derive via the intermediary of the effective velocity, which allows us to cancel out the coupling between the density and the velocity as in Haspot (Well-posedness in critical spaces for barotropic viscous fluids, 2009). Second, we improve the results of Charve and Danchin (2010) and Chen et al. (2010) by adding as in Charve and Danchin (2010) some regularity on the initial data in low frequencies. In this case we obtain global strong solutions for a class of large initial data which rely on the results of Hoff (Arch Rational Mech Anal 139:303–354, 1997), Hoff (Commun Pure Appl Math 55(11):1365–1407, 2002), and Hoff (J Math Fluid Mech 7(3):315–338, 2005) and those of Charve and Danchin (2010) and Chen et al. (2010). We conclude by generalizing these results for general viscosity coefficients.  相似文献   

15.
It is a well-known problem to derive nonlinear stability of a traveling wave from the spectral stability of a linearization. In this paper we prove such a result for a large class of hyperbolic systems. To cope with the unknown asymptotic phase, the problem is reformulated as a partial differential algebraic equation for which asymptotic stability becomes usual Lyapunov stability. The stability proof is then based on linear estimates from (Rottmann-Matthes, J Dyn Diff Equat 23:365–393, 2011) and a careful analysis of the nonlinear terms. Moreover, we show that the freezing method (Beyn and Thümmler, SIAM J Appl Dyn Syst 3:85–116, 2004; Rowley et al. Nonlinearity 16:1257–1275, 2003) is well-suited for the long time simulation and numerical approximation of the asymptotic behavior. The theory is illustrated by numerical examples, including a hyperbolic version of the Hodgkin–Huxley equations.  相似文献   

16.
The turbulence structure near a wall is a very active subject of research and a key to the understanding and modeling of this flow. Many researchers have worked on this subject since the fifties Hama et al. (J Appl Phys 28:388–394, 1957). One way to study this organization consists of computing the spatial two-point correlations. Stanislas et al. (C R Acad Sci Paris 327(2b):55–61, 1999) and Kahler (Exp Fluids 36:114–130, 2004) showed that double spatial correlations can be computed from stereoscopic particle image velocimetry (SPIV) fields and can lead to a better understanding of the turbulent flow organization. The limitation is that the correlation is only computed in the PIV plane. The idea of the present paper is to propose a new method based on a specific stereoscopic PIV experiment that allows the computation of the full 3D spatial correlation tensor. The results obtained are validated by comparison with 2D computation from SPIV. They are in very good agreement with the results of Ganapthisubramani et al. (J Fluid Mech 524:57–80, 2005a).  相似文献   

17.
We consider planar straight and curved masonry beams with the constitutive equation from Orlandi (Ph.D. thesis, 1999) and Zani (Eur. J. Mech. A, Solids 23:467–484, 2004). After stating some results about the solution to the boundary value problem, the limit analysis for this kind of bodies is outlined, based on energetic considerations (Lucchesi et al. in Q. Appl. Math. 68:713–746, 2010). The static and kinematic theorems of limit analysis, which usually are justified in a heuristic way (Heyman in The Masonry Arch, 1982; Kooharian in Proc. - Am. Concr. Inst. 89:317–328, 1953), are examined from this point of view. It is seen that the kinematic theorem does not always hold but can be proved under some hypotheses that are frequently met in applications.  相似文献   

18.
The present study is an extension of a recent paper of Freed et al. (J Mech Phys Solids 56:3003–3020, 2008). The final aim is to describe the transformation toughening behavior of a static crack along an interface between a shape memory alloy (SMA) and a linear elastic isotropic material. With an SMA as an equivalent Huber–Von Mises stress model (hypothesis of symmetric behavior between tension and compression), Freed et al. determine the initiation (ending) phase transformation yield surfaces in terms of the local phase angle introduced by Rice et al. (Metal ceramic interfaces, Pergamon Press, New York, pp 269–294, 1990). In this paper we give the general framework to determine this angle for a model integrating the asymmetry between tension and compression (experimentally measured: Vacher and Lexcellent in Proc ICM 6:231–236, 1991; Orgéas and Favier in Acta Mater 46(15):5579–5591, 2000), the Huber–Von Mises model being only a particular case. We demonstrate the local phase angle existence in an appropriate framing domain and give a sufficient hypothesis for its uniqueness and an algorithm to obtain it. Estimates are obtained in terms of physical quantities such as the Young modulus ratio, the bimaterial Poisson modulus values and also the choice of the yield loading functions. Finally, we illustrate this theoretical study by an application linking the asymmetry intensity on the width and the shape on predicted phase transformation surfaces and by a comparison with the symmetric case.  相似文献   

19.
Variational formulations are constructed for rate-independent problems in small-deformation single-crystal strain-gradient plasticity. The framework, based on that of Gurtin (J Mech Phys Solids 50: 5–32, 2002), makes use of the flow rule expressed in terms of the dissipation function. Provision is made for energetic and dissipative microstresses. Both recoverable and non-recoverable defect energies are incorporated into the variational framework. The recoverable energies include those that depend smoothly on the slip gradients, the Burgers tensor, or on the dislocation densities (Gurtin et al. J Mech Phys Solids 55:1853–1878, 2007), as well as an energy proposed by Ohno and Okumura (J Mech Phys Solids 55:1879–1898, 2007), which leads to excellent agreement with experimental results, and which is positively homogeneous and therefore not differentiable at zero slip gradient. Furthermore, the variational formulation accommodates a non-recoverable energy due to Ohno et al. (Int J Mod Phys B 22:5937–5942, 2008), which is also positively homogeneous, and a function of the accumulated dislocation density. Conditions for the existence and uniqueness of solutions are established for the various examples of defect energy, with or without the presence of hardening or slip resistance.  相似文献   

20.
We show that a smooth, small enough Cauchy datum launches a unique classical solution of the relativistic Vlasov–Darwin (RVD) system globally in time. A similar result is claimed in Seehafer (Commun Math Sci 6:749–769, 2008) following the work in Pallard (Int Mat Res Not 57191:1–31, 2006). Our proof does not require estimates derived from the conservation of the total energy, nor those previously given on the transversal component of the electric field. These estimates are crucial in the references cited above. Instead, we exploit the formulation of the RVD system in terms of the generalized space and momentum variables. By doing so, we produce a simple a priori estimate on the transversal component of the electric field. We widen the functional space required for the Cauchy datum to extend the solution globally in time, and we improve decay estimates given in Seehafer (2008) on the electromagnetic field and its space derivatives. Our method extends the constructive proof presented in Rein (Handbook of differential equations: evolutionary equations, vol 3. Elsevier, Amsterdam, 2007) to solve the Cauchy problem for the Vlasov–Poisson system with a small initial datum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号