首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Computational fluid dynamics(CFD)has become a valuable tool to study the complex gas-solid hydrodynamics in the circulating fluidized bed(CFB).Based on the two fluid model(TFM)under the Eulerian-Eulerian framework and the dense discrete phase model(DDPM)under the Eulerian-Lagrangian framework,this work conducts the comparative study of the gas-solid hydrodynamics in a CFB riser by these two different models.Results show that DDPM could be used to predict gas-solid hydrodynamics in the circulating fluidized bed,and there are differences between TFM and DDPM,especially in the radial distribution profiles of solid phase.Sensitivity analysis results show that the gas-solid drag model exhibits significant effects on the results for both the two models.The specularity coefficient and the restitution coefficient in the TFM,as well as the reflection coefficient and the parcel number in the DDPM,exhibit less impact on the simulated results.  相似文献   

2.
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.  相似文献   

3.
The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.  相似文献   

4.
This study experimentally investigates the impact of a single piezoelectric(PZT)actuator on a turbulent boundary layer from a statistical viewpoint.The working conditions of the actuator include a range of frequencies and amplitudes.The streamwise velocity signals in the turbulent boundary layer flow are measured downstream of the actuator using a hot-wire anemometer.The mean velocity profiles and other basic parameters are reported.Spectra results obtained by discrete wavelet decomposition indicate that the PZT vibration primarily influences the near-wall region.The turbulent intensities at different scales suggest that the actuator redistributes the near-wall turbulent energy.The skewness and flatness distributions show that the actuator effectively alters the sweep events and reduces intermittency at smaller scales.Moreover,under the impact of the PZT actuator,the symmetry of vibration scales’velocity signals is promoted and the structural composition appears in an orderly manner.Probability distribution function results indicate that perturbation causes the fluctuations in vibration scales and smaller scales with high intensity and low intermittency.Based on the flatness factor,the bursting process is also detected.The vibrations reduce the relative intensities of the burst events,indicating that the streamwise vortices in the buffer layer experience direct interference due to the PZT control.  相似文献   

5.
A model for deep bed filtration of a polydisperse suspension with small impurities in a porous medium is considered.Different suspended particles move with the same velocity as the carrier water and get blocked in the pore throats due to the size-exclusion mechanism of particle retention.A solution of the model in the form of a traveling wave is obtained.The global exact solution for a multiparticle filtration with one high concentration and several low concentrations of suspended particles is obtained in an explicit form.The analytic solutions for a bidisperse suspension with large and small particles are constructed.The profiles of the retained small particles change monotony with time.The global asymptotics for the filtration of a polydisperse suspension with small kinetic rates is constructed in the whole filtration zone.  相似文献   

6.
一种Cartesian气动网格的自适应划分算法   总被引:1,自引:0,他引:1  
提出了针对空间Cartesian结构化网格的自适应划分算法,以满足飞机总体设计过程中进行多学科设计优化时根据方案变化生成CFD计算网格的需要,使气动特性能够得以自动化分析,并且保证优化迭代过程的顺利进行.分析了Cartesian网格划分过程中的两个关键问题,并给出了解决方法.在此基础之上,从理论上推导了能够自动适应飞机布局形式以及几何尺寸任意变化的Cartesian网格生成算法和实际划分步骤,并给出了其中部分主要的计算公式,同时论述了自适应划分过程中的若干重要问题.阐述了自适应划分所需的飞机及其部件特征尺寸的获取途径.最后展示了几个由自适应划分算法生成的Cartesian网格实例以说明其实际应用.  相似文献   

7.
低温超导核磁共振陀螺仪模型   总被引:2,自引:0,他引:2  
建立了单工作物质的三自由度3He低温超导核磁共振陀螺仪结构;利用了量子力学和经典动力学,经过严密的力学分析和数学演算,给出了三轴陀螺仪的工作原理和结构示意图;针对陀螺仪的交叉轴角速率耦合问题,给出了附加磁场线圈解耦法和冗余设计结构,最后建立了基于超导量子干涉仪探测磁矩,并采用最小二乘估计法来推导陀螺进动频率.陀螺仪测速范围可以达到10-9~103 rad/s,漂移为10-4 (°)/h.该陀螺仪结合低温超导技术具有高精度的前景.需要进一步对超导量子干涉磁矩检测仪的精度与陀螺性能进行研究.  相似文献   

8.
We investigated the macro-and micro-mechanical properties of rigid-grain and soft-chip mixtures(GCMs)through numerical simulations using the discrete element method.We present a novel framework for the discrete modeling of soft chips and rigid grains in conjunction with calibration processes.Several numerical triaxial tests were also performed on GCMs with 0%,10%,20%,and 30%volumetric chip contents,P.The simulation results demonstrate that increasing P leads to higher GCM toughness,higher deviatoric peak stress,and higher corresponding shear strain.Higher P also contributes to more volume contraction and less dilation.The friction angles at both the peak and residual state significantly increase with increasing P.In view of the micro-mechanical features,strong contact force chains develop along the loading direction,which results in considerable anisotropy in the peak and residual states.Both the formation of strong force chains and rotation of grains decrease with increasing P,whereas the grain sliding percentage increases.The tensile force is mobilized with shearing and higher P leads to less mobilization of the tensile force.These findings are useful for better understanding the internal structure of GCMs with different soft-chip contents,especially in granular mixture mechanics and geomechanics.  相似文献   

9.
Numerous researches have focused on the physical behavior of an elastic material in the vicinity of a single hole under the assumption that the interaction effects arising from the introduction of multiple holes remain negligible if the holes are placed sufficiently far from each other.In an effort to understand hole interaction effects on heat conduction and thermal stress,we consider the case when two circular holes are embedded in an infinite elastic material and use complex variable methods together with numerical analysis to obtain solutions describing temperature and elastic fields in the vicinity of the two circular holes.The results indicate that the interaction effects on temperature distribution and stress strongly depend on the relative size of the two holes and the distance placed between them but not on the actual size of the holes.  相似文献   

10.
?????????     
编辑部的同志要我写一点回忆,以纪念<力学与实践>创刊30年.往事悠悠,使我又回到20世纪70年代那动荡不安,却又是激情四射的年代.  相似文献   

11.
Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.For some research studies in small domains, Δ is made much smaller than δ, and LES content is generated intentionally. However for natural DES applications in useful domains, it is preferable to over-ride the DES limiter and maintain RANS behavior in boundary layers, independent of Δ relative to δ. For this purpose, a new version of the technique – referred to as DDES, for Delayed DES – is presented which is based on a simple modification to DES97, similar to one proposed by Menter and Kuntz for the shear–stress transport (SST) model, but applicable to other models. Tests in boundary layers, on a single and a multi-element airfoil, a cylinder, and a backward-facing step demonstrate that RANS function is indeed maintained in thick boundary layers, without preventing LES function after massive separation. The new formulation better fulfills the intent of DES. Two other issues are discussed: the use of DES as a wall model in LES of attached flows, in which the known log-layer mismatch is not resolved by DDES; and a correction that is helpful at low cell Reynolds numbers.  相似文献   

12.
Hybrid models have found widespread applications for simulation of wall‐bounded flows at high Reynolds numbers. Typically, these models employ Reynolds‐averaged Navier–Stokes (RANS) and large eddy simulation (LES) in the near‐body and off‐body regions, respectively. A number of coupling strategies between the RANS and LES regions have been proposed, tested, and applied in the literature with varying degree of success. Linear eddy‐viscosity models (LEVM) are often used for the closure of turbulent stress tensor in RANS and LES regions. LEVM incorrectly predicts the anisotropy of Reynolds normal stress at the RANS‐LES interface region. To overcome this issue, use of non‐linear eddy‐viscosity models (NLEVM) have started receiving attention. In this study, a generic non‐linear blended modeling framework for performing hybrid simulations is proposed. Flow over the periodic hills is used as the test case for model evaluation. This case is chosen due to complex flow physics with simplified geometry. Analysis of the simulations suggests that the non‐linear hybrid models show a better performance than linear hybrid models. It is also observed that the non‐linear closures are less sensitive to the RANS‐LES coupling and grid resolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A Hybrid RANS/LES Simulation of Turbulent Channel Flow   总被引:1,自引:0,他引:1  
Hybrid models combining large eddy simulation (LES) with Reynolds-averaged Navier–Stokes (RANS) simulation are expected to be useful for wall modeling in the LES of high Reynolds number flows. Some hybrid simulations of turbulent channel flow have a common defect; the mean velocity profile has a mismatch between the RANS and LES regions due to a steep velocity gradient at the interface. This mismatch is reproduced and examined using a simple hybrid model; the Smagorinsky model is switched to a RANS model increasing the filter width. It is suggested that a rapid spatial variation in the eddy viscosity is responsible for an underestimate of the grid-scale shear stress and for the steep velocity gradient. To reduce the mean velocity mismatch a new scheme is proposed; additional filtering is introduced to define two kinds of velocity components at the interface between the two regions. The two components are used to remove inconsistency in the velocity equations due to a rapid variation in the filter width. Using the new scheme, simulations of channel flow are carried out with the simple hybrid model. It is shown that the grid-scale shear stress becomes large enough and most of the mean velocity mismatch is removed. Simulations for higher Reynolds numbers are carried out with the k–ε model and the one-equation subgrid-scale model. Although it is necessary to improve the turbulence models and the treatment of the buffer region, the new scheme is shown to be effective for reducing the mismatch and to be useful for developing better hybrid simulations. Received 5 April 2002 and accepted 8 January 2003 Published online 25 March 2003 Communicated by M.Y. Hussaini  相似文献   

14.
Large eddy simulation (LES) is combined with the Reynolds-averaged Navier–Stokes (RANS) equation in a turbulent channel-flow calculation. A one-equation subgrid-scale model is solved in a three-dimensional grid in the near-wall region whereas the standard k–ε model is solved in a one-dimensional grid in the outer region away from the wall. The two grid systems are overlapped to connect the two models smoothly. A turbulent channel flow is calculated at Reynolds numbers higher than typical LES and several statistical quantities are examined. The mean velocity profile is in good agreement with the logarithmic law. The profile of the turbulent kinetic energy in the near-wall region is smoothly connected with that of the turbulent energy for the k–ε model in the outer region. Turbulence statistics show that the solution in the near-wall region is as accurate as a usual LES. The present approach is different from wall modeling in LES that uses a RANS model near the wall. The former is not as efficient as the latter for calculating high-Reynolds-number flows. Nevertheless, the present method of combining the two models is expected to pave the way for constructing a unified turbulence model that is useful for many purposes including wall modeling. Received 11 June 1999 and accepted 15 December 2000  相似文献   

15.
We present a novel approach to hybrid Reynolds-averaged Navier-Stokes (RANS)/ large eddy simulation (LES) wall modeling based on function enrichment, which overcomes the common problem of the RANS-LES transition and enables coarse meshes near the boundary. While the concept of function enrichment as an efficient discretization technique for turbulent boundary layers has been proposed in an earlier article by Krank & Wall (A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94-116), the contribution of this work is a rigorous derivation of a new multiscale turbulence modeling approach and a corresponding discontinuous Galerkin discretization scheme. In the near-wall area, the Navier-Stokes equations are explicitly solved for an LES and a RANS component in one single equation. This is done by providing the Galerkin method with an independent set of shape functions for each of these two methods; the standard high-order polynomial basis resolves turbulent eddies, where the mesh is sufficiently fine and the enrichment automatically computes the ensemble-averaged flow if the LES mesh is too coarse. As a result of the derivation, the RANS model is applied solely to the RANS degrees of freedom, which effectively prevents the typical issue of a log-layer mismatch in attached boundary layers. As the full Navier-Stokes equations are solved in the boundary layer, spatial refinement gradually yields wall-resolved LES with exact boundary conditions. Numerical tests show the outstanding characteristics of the wall model regarding grid independence, superiority compared to equilibrium wall models in separated flows, and achieve a speed-up by two orders of magnitude compared to wall-resolved LES.  相似文献   

16.
Hybrid RANS/LES of flow and heat transfer in round impinging jets   总被引:1,自引:0,他引:1  
Fluid flow and convective heat transfer predictions are presented of round impinging jets for several combinations of nozzle-plate distances H/D = 2, 6 and 13.5 (where D is the nozzle diameter) and Reynolds numbers Re = 5000, 23,000 and 70,000 with the newest version of the k-ω model of Wilcox (2008) and three hybrid RANS/LES models. In the RANS mode of the hybrid RANS/LES models, the k-ω model is recovered. Three formulations are considered to activate the LES mode. The first model is similar to the hybrid models of Davidson and Peng (2003) and Kok et al. (2004). The turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the definition of the RANS eddy viscosity. As grid size, a maximum measure of the hexahedral grid cell is used. The second model has the same k-equation, but the eddy viscosity is the minimum of the k-ω eddy viscosity and the Smagorinsky eddy viscosity, following a proposal by Batten et al. (2004). The Smagorinsky eddy viscosity is formed with the cube root of the cell volume. The third model has, again, the same k-equation, but has an eddy viscosity which is an intermediate between the eddy viscosities of the first and second models. This is reached by using the cube root of the cell volume in the eddy viscosity formula of the first model.The simulation results are compared with experimental data for the high Reynolds number cases Re = 23,000 and Re = 70,000 and LES data for the low-Reynolds number case Re = 5000. The Reynolds numbers are defined with the nozzle diameter and the bulk velocity at nozzle outlet. At low nozzle-plate distance (the impingement plate is in the core of the jet), turbulent kinetic energy is overpredicted by RANS in the stagnation flow region. This leads to overprediction of the heat transfer rate along the impingement plate in the impact zone. At high nozzle-plate distance (the impingement plate is in the mixed-out region of the jet), the turbulence mixing is underpredicted by RANS in the shear layer of the jet which gives a too high length of the jet core. This also results in overprediction of the heat transfer rate in the impingement zone caused by too big temperature gradients at impingement.All hybrid RANS/LES models are able to correct the heat transfer overprediction of the RANS model. For good predictions at low nozzle-plate distance, it is necessary to sufficiently resolve the formation and development of the near-wall vortices in the jet impingement region. At high nozzle-plate distance, the essence is to capture the evolution and breakup of the flow unsteadiness in the shear layer of the jet, so that accurate mean and fluctuating velocity profiles are obtained in the impingement region. Although the models have a quite different theoretical justification and generate a quite different eddy viscosity in some flow regions, their overall results are very comparable. The reason is that in zones that are crucial for the results, the models behave similarly.  相似文献   

17.
Studies of the unsteady supersonic base flows around three afterbodies   总被引:1,自引:0,他引:1  
Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow pat- terns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5° BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements.  相似文献   

18.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Hybrid CFD/CAA methods have generally to be used for the numerical simulation of trailing-edge noise (see [9, 20] for instance). This study focuses on the first step of such hybrid methods, which is to predict the unsteady aerodynamic sources by the mean of a 3D unsteady simulation of the flow. Such a simulation is however generally still away from the numerical capabilities of ‘usual’ supercomputers. This paper investigates the use of a zonal LES method (based on the NLDE – Non-Linear Disturbance Equations – technique) for the numerical prediction of the aerodynamic noise sources. This method makes it possible to perform only zonal LES close to the main elements responsible of sound generation, while the overall configuration is only treated by a RANS approach. Attention will be paid to the specific boundary treatment at the interface between the RANS and LES regions. More precisely, the problem of the generation of turbulent inflow conditions for the LES region will be carefully addressed. The method is first assessed in the simulation of a flat plate ended by a blunted trailing-edge, and then applied to the simulation of the flow over a NACA0012 airfoil with blunted trailing-edge.  相似文献   

20.
The qualities of a DES (Detached Eddy Simulation) and a PANS (Partially-Averaged Navier–Stokes) hybrid RANS/LES model, both based on the kω RANS turbulence model of Wilcox (2008, “Formulation of the kω turbulence model revisited” AIAA J., 46: 2823–2838), are analysed for simulation of plane impinging jets at a high nozzle-plate distance (H/B = 10, Re = 13,500; H is nozzle-plate distance, B is slot width; Reynolds number based on slot width and maximum velocity at nozzle exit) and a low nozzle-plate distance (H/B = 4, Re = 20,000). The mean velocity field, fluctuating velocity components, Reynolds stresses and skin friction at the impingement plate are compared with experimental data and LES (Large Eddy Simulation) results. The kω DES model is a double substitution type, following Davidson and Peng (2003, “Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows” Int. J. Numer. Meth. Fluids, 43: 1003–1018). This means that the turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the eddy viscosity formula. The kω PANS model is derived following Girimaji (2006, “Partially-Averaged Navier–Stokes model for turbulence: a Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation bridging method” J. Appl. Mech., 73: 413–421). The turbulent length scale in the PANS model is constructed from the total turbulent kinetic energy and the sub-filter dissipation rate. Both hybrid models change between RANS (Reynolds-Averaged Navier–Stokes) and LES based on the cube root of the cell volume. The hybrid techniques, in contrast to RANS, are able to reproduce the turbulent flow dynamics in the shear layers of the impacting jet. The change from RANS to LES is much slower however for the PANS model than for the DES model on fine enough grids. This delays the break-up process of the vortices generated in the shear layers with as a consequence that the DES model produces better results than the PANS model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号