首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the micromechanics-based constitutive model, derived in our preceding work [Lee, H.K., Pyo, S.H., 2009. A 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces. Journal of Engineering Mechanics-ASCE, in press, doi:10.1061/(ASCE)EM.1943.7889.0000039.], incorporating a multi-level damage model and a continuum damage model, the overall elastic behavior and damage evolution of laminated composite structures are studied in detail. The constitutive model is implemented into the finite element program ABAQUS using a user-subroutine UMAT to solve boundary value problems of the composite structures. The validity of the implemented constitutive model is assured by comparing the predicted stress–strain curves with experimental data available in literature under uniaxial tension with various fiber orientations. The results show that the proposed micromechanics-based constitutive model accurately predict the overall elastic-damage behavior of laminated composite structures having different material compositions, thicknesses and boundary conditions.  相似文献   

2.
Delamination mechanisms and energy dissipation of carbon fibre epoxy composites under impact and high strain rate conditions are studies in terms of a new experimental set-up. The test set-up is designed to separate the Mode-I, -II and mixed mode delamination resistance so that relevant mechanisms can be studied in greater detail. The impact specimens consist of 18 × 18 mm laminated composite pieces bonded to steel bars to form the impact specimens with the normal Charpy and Izod specimen geometry. The impact energy dissipation is recorded and taken as a dynamic delamination toughness measurement, and the transition from the pure Mode-I to Mode-II through the mixed mode delamination is measured. Detailed delamination surface examinations by scanning electron microscopy (SEM) show that different failure mechanisms are involved in the dynamic and usual quasi-static delamination processes. The influence of chopped Kevlar fibres used as low cost interlaminar reinforcement on the energy dissipation is also studied.  相似文献   

3.
4.
采用一种新兴的无网格法——近场动力学理论,模拟复合材料结构在冲击波-破片群联合作用下的损伤情况。根据复合材料结构承受的载荷特性,分析冲击波-破片群联合作用下层合板及加筋板结构的损伤模式,考虑载荷作用次序等因素对于联合作用毁伤能力的影响规律。结果表明:联合作用对复合材料结构的损伤程度主要与冲击波强度、破片群侵彻能力、作用次序有关,主要损伤模式为分层失效、基体损伤、剪切损伤以及结构大变形;对于层合板而言,在冲击波先作用的工况下,结构损伤程度更高,损伤范围更大;对于加筋板而言,由于加筋板的筋条能显著降低冲击波作用,进而降低冲击波对破片群侵彻能力的增强效应,最终影响联合作用的毁伤能力,因而在破片群先作用的工况下反而损伤更严重。  相似文献   

5.
Effects of stress ratio on fatigue life of carbon-carbon composites   总被引:1,自引:0,他引:1  
Cyclic loading causes cumulative damage and therefore degrades the inelastic properties of composite materials. Present work investigates the damage development under tension-tension fatique, and the effect of stress ratio on the fatigue life of carbon-carbon (C/C) composites at room temperature at a frequency of 3 Hz. The fatigue damage has been identified through ultrasonic non-destructive technique, optical microscopy and scanning electron microscopy.From the S-N curve it has been observed that the endurance strength of C/C composite is quite high; approximately 85% of the ultimate tensile strength. The fatigue life of C/C composites has also been observed to increase with the stress ratio. Matrix cracks, filament splitting within the yarns, complete delamination and the nucleation of the interfacial flaws have been identified as the failure mechanisms during the fatigue tests. On the other hand, the failure modes during the static test were found to be complete fiber fracture accompanied by partial delamination. A statistical fatigue life distribution for carbon-carbon composites has also been presented in this paper.  相似文献   

6.
7.
Laser induced stress waves are used to characterize intrinsic interfacial strength of thin films under both tensile and mixed-mode conditions. A short-duration compressive pulse induced by pulsed-laser ablation of a sacrificial layer on one side of a substrate is allowed to impinge upon a thin test film on the opposite surface. Laser-interferometric measurements of test film displacement enable calculation of the stresses generated at the interface. The tensile stress at the onset of failure is taken to be the intrinsic tensile strength of the interface. Fused-silica substrates, with their negative nonlinear elasticity, cause the compressive stress wave generated by the pulse laser to evolve a decompression shock, critical for generation of the fast fall times needed for significant loading of surface film interfaces. By allowing the stress pulse to mode convert as it reflects from an oblique surface, a high amplitude shear wave with rapid fall time is generated and used to realize mixed-mode loading of thin film interfaces. We report intrinsic strengths of an aluminum/fused silica interface under both tensile and mixed-mode conditions. The failure mechanism under mixed-mode loading differs significantly from that observed under pure tensile loading, resulting in a higher interfacial strength for the mixed-mode case. Inferred strengths are found to be independent, as they should be, of experimental parameters.  相似文献   

8.
9.
The use of through-thickness reinforcement in the form of short rods has been proposed to improve the interlaminar properties of laminated composites in the recent years. Compared to a fibrous short rod, which is often referred to as z-fiber, a metallic rod, referred to as z-rod in this paper, has reasonably high capability to carry transverse loading, i.e., a z-rod can provide both axial and transverse bridging tractions to the delamination crack. Therefore, a new analytical model is proposed to study the bending effect of the z-rods on mode I delamination toughness of laminated composites. In this new model, both the axial pull-out and the transverse bending are considered simultaneously. New bending moment and displacement relationships for a single z-rod are established by modeling the z-rod embedded in a linearly elastic and rigid-perfectly plastic matrix using the classical beam theory. By using an approximate expression for mode I fracture toughness of double-cantilever-beam (DCB) specimen, a parametric analysis of DCB specimen reinforced by the z-rods is conducted. The present numerical results show that the bending effect should not be ignored when stiffer z-rods are employed to reinforce the laminated composites.  相似文献   

10.
11.
The random critical-core model is adapted to investigate the tensile failure mech-anism and hybrid effect of unidirectionally arrayed hybrid composites with alternating low andhigh elongation fibers.By utilizing the model in conjunction with the results of the stress con-centration analysis in which the interfacial damage between fiber and matrix is considered,amicroscopic statistical analysis of both the first failure and ultimate failure of hybrids is per-formed.The variations of the first failure strain,the ultimate failure strain and the hybrid effectas the interfacial shear strength are obtained quantitatively.The concept of the hybrid effect forstrains has been clarified.The present results are compared with available experiment data anda reasonable agreement is found between the analytical predictions and the experimental results.  相似文献   

12.
The effect of fiber arrangement on transverse tensile failure in unidirectional carbon fiber reinforced composites with a strong fiber-matrix interface was studied using a unit-cell model that includes a continuum damage mechanics model. The simulated results indicated that tensile strength is lower when neighboring fibers are arrayed parallel to the loading direction than with other fiber arrangements. A shear band occurs between neighboring fibers, and the damage in the matrix propagates around the shear band when the interfacial normal stress (INS) is sufficiently high. Moreover, based on the observation of Hobbiebrunken et al., we reproduced the damage process in actual composites with a nonuniform fiber arrangement. The simulated results clarified that the region where neighboring fibers are arrayed parallel to the loading direction becomes the origin of the transverse failure in the composites. The cracking sites observed in the simulation are consistent with experimental results. Therefore, the matrix damage in the region where the fiber is arrayed parallel to the loading direction is a key factor in understanding transverse failure in unidirectional carbon fiber reinforced composites with a strong fiber/matrix interface.  相似文献   

13.
A penalised interface model, whose strain energy is the penalty functional related to interface adhesion constraint, is introduced in conjunction with a damageable interface whose local constitutive law, in turn, represents bridging stress effects, in order to analyse delamination and bridging phenomena in laminated plates. The laminate is modelled by means of first-order shear deformable layer-wise kinematics and the governing equations are formulated in the form of a non-linear differential system with moving intermediate boundary conditions related to opportune delamination and bridging growth conditions. The problem is solved through an analytical approach. The model leads to an accurate and self-consistent evaluation of the energy release rate and its mode components due to the inclusion of significant contributions arising from coupling between in-plane and transverse shear stresses, and to an asymptotic estimate of interlaminar stresses. The salient features of the proposed model are investigated in the context of an energy balance approach and of a J-integral formulation, thus providing simple results useful to model delamination growth and bridging behaviour when mixed mode loading is involved. The accuracy of the proposed model is substantiated through comparisons with results from continuum analysis obtained by a finite element (FE) procedure. The effectiveness of the proposed model is highlighted by showing the solution of a two-layered plate scheme subjected to pure and mixed mode loading conditions and to fibre bridging stresses. The results point out that the present model, despite its low computational cost in comparison with more complex FE analyses, is an efficient tool to predict delamination and bridging evolution.  相似文献   

14.
Summary From the continuum mechanics points of view, most of commercial fibre-reinforced composites (FRCs) can be considered to be anisotropic materials with one of the five material symmetries: transverse isotropy, orthotropy, tetratropy, hexatropy and octotropy, as illustrated in the preceding paper (Part I) [1]. No properly general formulation of constitutive equations for tetratropic, hexatropic and octoctropic types of FRC has been found in the literature. In this paper, the restriction to the admissible deformation of a FRC imposed by the failure strains of the fibres is investigated. The complete and irreducible two-dimensional tensor function representations regarding tetratropy, hexatropy and octotropy derived in Part I are applied to formulate constitutive equations for FRCs in plane problems of elasticity, yielding and failure in the present work, and of heat conduction, continuum damage and asymmetric elasticity in a continued work (Part III, forthcoming).The supports from the Alexander von Humboldt Foundation, Germany and the Research Foundation of Tsinghua University, P. R. China are acknowledged by the first author.  相似文献   

15.
A constitutive model for interface debonding is proposed which is able to account for mixed-mode coupled debonding and plasticity, as well as further coupling between debonding and friction including post-delamination friction. The work is an extension of a previous model which focuses on the coupling between mixed-mode delamination and plasticity. By distinguishing the interface into two parts, a cracked one where friction can occur and an integral one where further damage takes place, the coupling between frictional dissipation and energy loss through damage is seamlessly achieved. A simple framework for coupled dissipative processes is utilised to derive a single yield function which accurately captures the evolution of interface strength with increasing damage, for both tensile and compressive regimes. The new material model is implemented as a user-defined interface element in the commercial package ABAQUS and is used to predict delamination under compressive loads in several test cases.  相似文献   

16.
基于Li Fa Ming的平行棒模型,对短钢纤维增强砂浆的平板试件,在直接拉伸条件下的破坏行为进行了分析,假设试件由N根相互平行的复合棒组成,每根复合棒又由一根纤维棒和S根砂浆棒组成,考虑纤维在基体中分布的方向因子和长度因子.砂浆的损伤可按连续损伤力学进行处理,将Loland模型和Mazars模型加以改进来描述.依据多根纤维的拉拨模型,假定纤维与基体间界面的损伤由纤维脱粘长度与纤维插入长度的比值来描述,复合材料的损伤包括基体的损伤和纤维的损伤,借助已有的试验数据和文献资料来确定本构模型中的各种参数,成功建立了短钢纤维增强砂浆直接拉伸应力一应变全曲线模型.所建模型与试件在直接拉伸试验下的应力-应变全曲线进行了对比,结果较为吻合.  相似文献   

17.
An accurate laminate model developed by using multilayer shear deformable plate modeling and interface elements, based on fracture mechanics and contact mechanics, is proposed to analyze mixed mode delamination in composite laminates. Perfect adhesion along the undelaminated portion of the delamination plane is simulated by treating interface stiffnesses as penalty parameters, whereas to enforce interface displacement continuity between plate elements constituting each sub-laminate above or below the delamination plane, the Lagrange multiplier method is used. The governing differential equations are derived through a variational procedure by using a modified total potential energy functional. Results are obtained by numerical integration of the non-linear three-point boundary value problem modeling mixed-mode delamination of the laminate plate subjected to end loading, which accounts also for the frictionless contact condition.The coupling of a penalty procedure with the Lagrange multiplier method, results in an accurate and direct energy release rate evaluation. Comparisons with results available from the literature obtained with a local continuum approach, show that mode partition may be performed to the desired accuracy by refining multilayer plate models for each sub-laminate. In addition, original analytical formulas for mode partition are obtained by coupling the interface approach and fracture mechanics concepts, evidencing the effectiveness of the proposed approach and gaining a better insight into the influence of shear effects on mode decomposition. Numerical computations for practical problems, evidence both the relative simplicity and the efficiency of the proposed model to represent mixed mode interlaminar fracturing as well as crack–face interaction.  相似文献   

18.
19.
The fatigue properties of graphite/epoxy (Gr/Ep) T300/5208 composite laminates of 16 plies with a central circular hole subjected to tension-tension (T-T) constant-stress amplitudes at room temperature and low humidity have been fully investigated. Studied are four types of notched laminates which are classified as unidirectional, off-axis, orthotropic shear and quasi-isotropic. Some of them were precracked to initiate and guide the crack growth transversely. Our work is experimental and the analysis is based on a semiempirical approach. We have experimentally measured S-N curves, failure surfaces, crack lengths and their corresponding growth directions, delamination areas and transverse delamination lengths for the above series of composites. The fatigue failure mechanism was observed and expressed schematically. To analyze the experimental results, we have categorized the S-N curves by three common equations. The effective transverse crack length of quasi-isotropic laminates was found to be independent of the applied stress. For simplicity, it was modeled by a power law of applied cycles. It was also found that the delamination area could be expressed by a power law of applied cycles. Hence, the so-called modified Paris law, i.e., the power law of cycles, proposed here has been verified as satisfactorily acceptable.  相似文献   

20.
张洁皓  段玥晨  侯玉亮  铁瑛  李成 《力学学报》2019,51(5):1411-1423
针对平纹编织复合材料低速冲击响应和损伤问题,提出了一种多尺度分析方法. 首先, 建立微观尺度单胞模型,引入周期性边界条件,采用最大主应力失效准则和直接刚度退化模型表征纤维丝和基体的损伤起始与演化,预测了纤维束的弹性性能和强度性能. 其次,将这些性能参数代入介观尺度单胞模型,基于Hashin和Hou的混合失效准则以及连续介质损伤模型对介观尺度单胞进行6种边界条件下的渐进损伤模拟.然后采用渐进均匀化方法,以介观尺度单胞为媒介预测了0$^\circ$和90$^\circ$子胞的性能参数,并建立平纹编织复合材料的子胞模型,进而扩展成为材料的宏观尺度低速冲击模型. 在此基础上,研究了平纹编织复合材料低速冲击下的力学响应与损伤特征.结果表明:宏观冲击仿真和试验吻合较好, 验证了多尺度方法的正确性;最大接触力、材料吸能和分层面积均随冲击能量的增大而增大,分层损伤轮廓逐渐从椭圆形向圆形转化;基体拉伸和压缩损伤的长轴方向分别与子胞材料主方向正交和一致,损伤面积前者远大于后者.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号