首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
近十五年来,卤化银感光乳剂的制备有了长足的发展,出现了一系列新型卤化银微晶,例如扁平T-颗粒、双层结构颗粒、外延复合晶体、多层结构颗粒、糙面颗粒等等.这些新型微晶乳剂的出现使“微粒高感”成为可能,在此基础上开发出的新一代彩色和黑白感光材料的质量和性能达到了前所未有的高水平.这表明卤化银乳剂制备技术的更新对感光材料的发展起着决定性的作用.  相似文献   

2.
微粒高感是卤化银感光材料的发展方向。一般说来卤化银颗粒越小,其感光度越低,为了制备微粒高感的卤化银感光材料,在保证微粒的前提下,寻找一些有效的增感剂能达到微粒高感的目的.冠醚化合物是一类新型的增感剂。近年来,冠醚化合物增感卤化银乳剂已有过一些报道[1,2]。作者[3,4]对硫杂冠醚化合物增感澳化银乳剂做过一些探讨。  相似文献   

3.
近年来,超细颗粒照相乳剂逐渐受到人们的注意,这是因为全息术和微电子制版材料的广泛应用,需要高解像率和高感光度的照相材料.但是,在颗粒尺寸不变的情况下,颗粒尺寸小于0.05μm的胶态卤化银乳剂难以用化学增感的方法实现感光度的提高[1]。硫氰酸钾在常规照相乳剂中是卤化银的溶剂.而在超细卤化银颗粒乳剂中,如果控制pAg在6.1~6.8范围内,使用硫氰酸钾,能提高超细卤化银颗粒乳剂的感光度,而颗粒尺寸不变,这一效果对全息术有重要现实意义。硫氰酸钾在超细卤化银颗粒乳剂中的作用,迄今为止,在文献上还未见报导。  相似文献   

4.
80 年代以来,许多新型的卤化银微晶已在新开发的各种高质量感光材料中得到应用.近十年来在国内外文献中又出现新型中空卤化银微晶制备方法的报道.本文着重研究一种表面有许多小孔及凹坑的中空卤化银T颗粒的制备方法和感光性能.由于其独特的孔洞结构,使位错、缺陷增加,填隙银离子浓度增加和电子陷阱增多,潜影形成效率提高,从而达到提高乳剂感光性能的目的.  相似文献   

5.
应用双注仪制备了碘含量1.5%的AgBrI乳剂,在一定温度,pAg和pH下将乳剂成熟到一定程度(D0>5.0).用此乳剂做为核,采用二次乳化法包壳。本文主要研究了包壳时pH值,壳的组成,厚度对乳剂颗粒大小、形状、显影密度及离子电导的影响。结果表明:(1)当壳的组成为AgBrI时,随氯含量增加(分别为0、2.5、5、10%mol),核壳乳剂表显密度变化不大而内显密度上升;(2)包壳时随pH由低到高(pH为2、4、6、8),乳剂颗粒由小变大。颗粒形状由规整八面体变得棱角模糊,均匀度下降,表显密度由小变大,而内显密度由大变小;(3)在相同pH下包壳,随壳厚度的增加(壳与核卤化银的摩尔数比为:1:0.5,1:1,1:2,1:3)表显密度急剧下降,内显密度变化不大;(4)随包壳时pH增加,卤化银微晶的离子电导增大.  相似文献   

6.
本实验制备了高氯卤化银立方体系列乳剂和高氯卤化银(100)晶面T颗粒乳剂,对高氯卤化银立方体乳剂进行了不同种类掺杂剂的掺杂试验.通过测定以上各乳剂在常规曝光和高照度曝光下的照相性能,表明了在高氯卤化银乳剂中掺杂碘化物、掺杂铱络合物和掺杂浅电子陷阱掺杂剂都可以不同程度地改善乳剂的高照度性能,几种改进措施的结合效果更好.  相似文献   

7.
制备依内敏的AgBr立方体乳剂,乳剂被二氧化硫脲和三氯化金灰化。实验表明:有金存在时灰化乳剂,灰化中心优先在颗粒表面形成;金不存在时,则灰化中心优先在颗粒内部形成。用Na1S2O3溶液刻蚀乳剂,得到了灰化中心在乳剂颗粒体相中的分布曲线。当二氧化硫脲量小,加金灰化时,灰化中心分布在颗粒表面和次表面;当二氧化硫脲量大,加金灰化时,灰化中心分布在颗粒体相中,但由表到里,灰化中心越来越少;当二氧化硫脲量大,不加金灰化时,灰化中心主要分布在颗粒中层部分。对加金灰化的乳剂来说,由于颗粒内部没有灰化中心竞争光生空穴,有大量的光生空穴破坏颗粒表面的灰化中心,因而可以获得高感直接正像乳剂。  相似文献   

8.
使用成色显影的彩色感光材料中,构成彩色影像的单元是围绕在被显影的卤化银颗粒上所生成的染料云,为深入了解彩色影像的结构和改善彩色影像质量,研究染料云的形态很有意义,照相乳剂中卤化银的颗粒很小,很难用各种显微镜观察染料云的形态,本文采用电化学方法,用表面涂以成色剂胶冻的金电极作为工作电极。  相似文献   

9.
感光乳剂中卤化银颗粒接收足够的曝光量后可形成潜影,经过显影便成为可见影像。这个过程可以看作是第一级放大。它的放大因子为10~9。但是影像的密度取决于单位面积上显出的银量和银影像的遮盖本领。如果单位面积上显出的银颗粒太少,影像就不能被眼睛或仪器(如密度计)检测出来。单位面积上银颗粒太少可由两个原因造成的:或是因为曝光量太低以致具有可显潜影的颗粒太少;或是因为乳剂层中卤化银颗粒本来就太少。  相似文献   

10.
最近,在国外文献中开始出现新型中空卤化银微晶制备方法的报道[1-6]。综其所述,中空卤化银微晶与常规微晶相比,具有以下优点:(1)节省贵重金属银的用量,可达到降低成本的目的;(2)具有高的表面积/体积比,从而具有更高的吸光效率;(3)由于比表面积大,可吸附更多的光谱增感染料及其他有用的照相有机物;(4)显影速度快。这些特点都可使中空颗粒乳剂在不增大颗粒尺寸的前提下提高乳剂的感光性能。  相似文献   

11.
用于感光材料的卤化银微晶合成技术近二十年来取得了很大进展,合成出了诸如T-颗粒、核壳乳剂和外延复合颗粒等,使感光材料的性能日趋优异。但由于感光化学反应(如化学增感、光谱增感、潜影形成及显影过程等)基本上都发生在微晶的表面,而微晶核内部的卤化银却未发生作用,而随定影过程被溶解成废液,这样便造成贵金属银的浪费。  相似文献   

12.
本文研究了光谱增感染料的结构对立方体卤化银乳剂的感光性能的影响,并利用反射光谱和彩色分析荧光电镜研究了染料在卤化银微晶上的聚集态和J 聚集体的相对尺寸,通过测定乳剂离子电导率研究了染料的结构对乳剂离子电导率的影响.实验结果表明:本文中所用的九个染料不管是增感还是减感染料都能在立方体卤化银乳剂上形成J 聚集态;对噻碳菁染料而言,其5位上无论是吸电子基团还是推电子基团的染料形成的J 聚集体的平均尺寸皆较未取代染料的大,其增感效果也较好;苯环5位上吸电子基取代或平面性好的噻碳菁染料可提高立方体AgBrI乳剂的离子电导率,证明它们的增感效果也好;6位硝基取代的吲哚碳菁染料是典型的减感染料,其在立方体乳剂上所形成的J 聚集体较小,但是对乳剂的离子电导无影响.此外,本文还试图对不对称插烯菁染料Dye9使立方体AgBrI乳剂减感的作用进行了解释  相似文献   

13.
用(NH4)3IrCl6(Ⅲ)和(NH4)IrCl6(Ⅳ)分别对立方体AgBr乳剂颗粒表面和内部进行敏化,用表面显影和内部显影的方法,对铱盐在乳剂颗粒中的作用进行了研究。实验表明,经铱表敏的AgBr乳剂表面感光度增加,而铱内敏的AgBr乳剂表面感光度降低,内部感光度增加;铱内敏并经灰化的乳剂在曝光后能形成直接正像。这是因为经化学灰化的铱内敏乳剂在曝光后,光生电子被乳剂颗粒内部的铱中心捕获而形成内潜影,光空穴则破坏颗粒表面的灰化中心,使其不能显影。因此,我们认为铱在乳剂颗粒内部起着电子陷阱的作用。  相似文献   

14.
本文系统地研究了灰化剂用量,pH,pAg对内敏直接正像乳剂灰化过程的影响。从研究中得到,随着灰化剂用量和pH的增加,直接正像乳剂的最大密度、最小密度和反差均增大,而感光度则降低。当pAg=7.3时,最大密度和反差均出现最大值,而感光度则随着pAg的增大而增大。  相似文献   

15.
本文用反相微乳液法制备了纳米Ag2S,并用作卤化银乳剂的硫增感剂,研究了其增感效果、增感规律及可能的增感机理.反相微乳液由异辛烷、表面活性剂AOT钠盐和水形成;制得的Ag2S粒径3—5 nm;用制得颗粒增感卤化银乳剂,获得的感光性能优越于用Na2S2O3水溶液增感;增感规律的研究表明,随着乳剂中纳米Ag2S浓度的增加,模型乳剂感光度迅速提高、灰雾变化不大,并在100—200μmol/molAg左右获得最佳感光性能,进一步增加浓度则感光度呈下降趋势、灰雾升高;获得最佳感光性能所需的化学增感时间很短,约40分钟,之后感光度不再增加、灰雾上升;用漫反射光谱(DRS)作探针,跟踪记录增感时卤化银微晶表面上纳米Ag2S增感剂颗粒的演变,为新型纳米增感剂的优异增感特性提供了机理性解释.  相似文献   

16.
近20年来,随着卤化银微晶合成技术的进步,合成出了诸如T-颗粒、核壳乳剂和外延复合颗粒乳剂等性能优异的微晶体,极大地提高了乳剂的感光性能.但这些乳剂也有一个共同的缺点,即大量消耗贵金属银,且未成影像的银均随定影过程而浪费.为改善此类乳剂的不足,各国科...  相似文献   

17.
卤化银乳剂经晶体生长、水洗、化学增感以后,还必须进行光谱增感,即加入感绿和感红的染料,以扩大卤化银乳剂微晶体对绿光和红光的光谱响应范围.  相似文献   

18.
本文用介电损耗法测定了(NH4)2IrCl6和(NH4)3IrCl6在不同加入量(10-8~10-3M/MAgX)时对物理成熟后的AgCl(Br、I)乳剂的离子电导的影响。随着铱盐加入量的不断增大,介电吸收峰fmax不断向低频方向偏移。当掺杂量达到10-3M/MAgX时,吸收峰明显变宽。(NH4)2IrCl6和(NH4)3IrCl6的加入量相同时,这两种铱盐所导致的fmax的偏移也相近。 铱盐对于调变已经物理成熟的AgCl(Br,I)乳剂的离子电导率有很大作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号