首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Rotationally selected infrared spectra of jet-cooled CH3OD have been recorded and analyzed in the OD-stretch region (2710-2736 cm−1). The observed spectra are obtained by monitoring three E-species microwave transitions (1−1 ← 10 at 18.957 GHz, 2−1 ← 20 at 18.991 GHz, and 3−1 ← 30 at 19.005 GHz) in a narrowband cavity Fourier transform microwave spectrometer, using the background-free coherence-converted population transfer technique. Of the four upper state subbands observed, two (K′ = 0 and −2) are split by perturbations. The E-species deperturbed band origin is at 2718.1 cm−1. The deperturbed reduced term values follow a pattern similar to the ground state. This allows the J′ = 0 torsional tunneling splitting to be estimated as 2.1 cm−1, which can be compared to 2.6 cm−1 in the ground state.  相似文献   

2.
The Fourier transform infrared gas-phase spectrum of thiazole, C3H3NS, has been recorded in the 600-1400 cm−1 wavenumber region with a resolution around 0.0030 cm−1. Nine fundamental bands (ν5(A′) to ν11(A′), ν15(A″), and ν16(A″)) are analysed employing the Watson model. Ground-state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. A detailed analysis of perturbations identified in the ν11(A′) band at 866.5 cm−1 enables a definitive location of the very weak ν10(A′) and ν14(A″) bands at 879.3 and 888.7 cm−1, respectively. The three levels are analysed simultaneously by a model including Coriolis resonance using an ab initio predicted first order c-Coriolis coupling constant; second and higher order Coriolis parameters are determined. Qualitative explanations in terms of Coriolis resonances are given for a number of crossings observed in ν5(A′), ν6(A′), and ν7(A′) at 1383.7, 1325.8, and 1240.5 cm−1, respectively. The rotational constants, anharmonic frequencies, and vibration-rotation constants (alphas, ) calculated by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, have been compared with the present experimental data. The rotation constant differences for each vibrational state, from the ground state values, are closer to experiment from the TZ2P calculations relative to those using cc-pVTZ. The values for ΔJ, ΔJK, ΔK, δJ, and δK are close to experiment with both basis sets.  相似文献   

3.
The rovibrational spectrum of the He-N2O van der Waals complex has been recorded in the N2O-monomer ν1 region (∼1285 cm−1) using an infrared tunable diode laser spectrometer in conjunction with a free supersonic jet expansion and an astigmatic multi-pass absorption cell. Twenty-two lines are assigned to the ν2-band of He-N2O. Rotational constants for the ν2-excited state are derived. The band-origin of the spectrum is determined to be ν0 = 1285.0666(7) cm−1 and shows a blue-shift of 0.1633(8) cm−1 compared with the N2O ν1-band origin.  相似文献   

4.
Rotational level structure of 12 vibrational states of CH2DI with energies in the 1000-1800 cm−1 region has been retrieved from high resolution (0.001-0.003 cm−1) FTIR spectra. Eleven vibrational states, namely, 21, 3161(A′), 51(A′′), 3161(A′′), 62(A′), 51(A′), 61(A′) 61(A′′), 2131, 62(A′′), 3261(A′) and 3151(A′′) have been found to interact. A total of 27 919 transitions belonging to diverse fundamental, combination and hot bands were assigned and used in the combined nonlinear root mean square fit to give the band centers, rotational, centrifugal distortion and coupling parameters of the states under investigation. The RMS deviation of the fit has been demonstrated to be 0.000218 cm−1. The number of the coupling parameters required to reproduce the observed spectra with the experimental uncertainty appeared to be 46.  相似文献   

5.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

6.
The rovibrational spectrum of the N2-N2O van der Waals complex has been recorded in the N2O ν1 region (∼1285 cm−1) using a tunable diode laser spectrometer to probe a pulsed supersonic slit jet. The observed transitions together with the data observed previously in the N2O ν3 region are analyzed using a Watson S-reduced asymmetric rotor Hamiltonian. The rotational and centrifugal distortion constants for the ground and excited vibrational states are accurately determined. The band-origin of the spectrum is determined to be 1285.73964(14) cm−1. A restricted two-dimensional intermolecular potential energy surface for a planar structure of N2-N2O has been calculated at the CCSD(T) level of theory with the aug-cc-pVDZ basis sets and a set of mid-bond functions. With the intermolecular distance fixed at the ground state value = 3.6926 Å, the potential has a global minimum with a well depth of 326.64 cm−1 at θN2 = 11.0° and θN2O = 84.3° and has a saddle point with a barrier height of 204.61 cm−1 at θN2 = 97.4° and θN2O = 92.2°, where θN2(θN2O) is the enclosed angle between the N-N axis (N-N-O axis) and the intermolecular axis.  相似文献   

7.
The enhancement spectrum of the collision induced absorption of D2 in its fundamental band region 2600-4000 cm−1 in binary mixtures D2-Kr was studied at 298 K for base densities of D2 in the range 9-20 amagat and for partial densities of Kr in the range 7-120 amagat. The binary absorption coefficient of the band has been determined from the measured integrated absorption coefficient and found to be 3.9 × 10−3 cm−2 amagat−2. An analysis of the experimental spectrum was carried out by assuming appropriate line-shape functions and the half-width parameters δ1, δ2, δd and δc of the long range quadrupole, and of the short range overlap induced transitions have been determined. Good agreement was obtained between the recorded spectrum of the fundamental band and the synthetic profile.  相似文献   

8.
The infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag+ cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag+ cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, −5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag+(CO)2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag+ ion at 2211 cm−1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag+(CO)2 complex shift to 2231 cm−1 and 2205 cm−1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H2O complex shifts to 2199 cm−1, the symmetric and antisymmetric O-H stretching frequencies are 3390 cm−1 and 3869 cm−1, respectively. The Gibbs free energy change (ΔGH2O) is −6.58 kcal/mol as a H2O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H2O complex is more stable at room temperature.  相似文献   

9.
The rotational spectrum of argon trifluoroacetonitrile complex has been studied by pulsed-nozzle, Fourier transform microwave spectroscopy. Both a-type and b-type transitions have been observed. The rotational constants are A = 3053.0903(2) MHz, B = 1039.9570(2) MHz, and C = 895.5788(1) MHz. The 14N nuclear quadrupole hyperfine components of the rotational transitions have been resolved, the 14N nuclear quadrupole coupling constants are χaa = 1.746(1) MHz, and χbb − χcc = −6.426(2) MHz. The complex is T-shaped, with the argon atom located 3.73 Å from the center of mass of the trifluoroacetonitrile molecule.  相似文献   

10.
Superconducting polycrystalline BSCCO fibers of 2:2:1:2 nominal composition were grown by the electrically assisted laser floating zone (EALFZ) technique. An electric current density of 2.1 A cm−2 was applied through the solid/liquid (S/L) interface. A net effect of the fiber diameter on the as-grown microstructure and on the final superconducting properties is observed. A higher critical current density (∼2520 A cm−2) results for the thinner fibers (? = 1.7 mm) comparing to the value (∼1065 A cm−2) found for the wider ones (? = 2.5 mm). The steep axial thermal gradient at the S/L interface in the thinner fibers is responsible for its superior texture degree, a crucial parameter for improved current transport properties. Moreover, a Cu-free Bix(Sr,Ca)yOz phase crystallizes preferentially from the melt in the wider fibers, acting as obstacles to the current flux.  相似文献   

11.
The high resolution absorption spectrum of dideuterated water, D216O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13 600-14 020 cm−1 spectral region which is the highest energy region reported so far for this water isotopologue. Because the HD16O absorption is stronger by three orders of magnitude in the region under study, it was necessary to use high deuterium enrichment in order to minimize the HD16O absorption lines overlapping the D216O spectrum. With the high sensitivity achieved (noise equivalent absorption αmin ∼10−9 cm−1), transitions with line strengths on the order of 5 × 10−28 cm molecule−1 could be detected. The spectrum analysis, based on recent variational calculations has provided a set of 177 new rovibrational energy levels belonging to six vibrational states.The most complete set of 53 vibrational energy levels of D216O, including the three newly determined band origins, was constructed from an exhaustive review of the literature data. The fitting of the parameters of the vibrational effective Hamiltonian has allowed to reproduce the whole set of vibrational energies with an rms deviation of 0.055 cm−1. This simple model gave consistent vibrational labels of the D216O states up to 18 000 cm−1. Above 15 000 cm−1, Fermi and Darling-Dennison resonance interaction were found to induce strong vibrational mixings of the wave functions in the normal mode basis, leading to ambiguous vibrational labeling.  相似文献   

12.
In a discharged supersonic jet of Cl2, transitions of the D′ 2g(3P2)-A3Π(2u) system for 35Cl2 were observed directly by laser induced fluorescence spectroscopy. By a discharge in Cl2, the Cl2 molecules were populated into the A′ state, which is a metastable and optically forbidden state, from the state. An ultraviolet laser radiation excites the molecules to the D′ ion-pair state. A set of Dunham parameters for the A′ state is determined from a global least-squares fitting for 59 vibronic bands with v″ = 0-7. In the fitting, the previously reported data, T(v) and B(v) for the v = 14 and 15 bands of the A′ state [T. Ishiwata, A. Ishiguro, K. Obi, J. Mol. Spectrosc. 147 (1991) 300-320], were included. Y00 = 57295.723(5) cm−1 of the D′ state [J.-H. Si, T. Ishiwata, K. Obi, J. Mol. Spectrosc. 147 (1991) 334-345] was also included in the global fitting in order to determine the absolute position of the A′ state. The determined parameters of the A′ state are Y00 = 17171.506(14), Y10 = 255.915(85), Y20 = −4.465(70), Y30 = −8.7(23) × 10−2, Y40 = 6.3(35) × 10−3, Y50 = −4.9(26) × 10−4, Y60 = 1.43(69) × 10−5, Y01 = 0.16282(15), Y11 = −2.363(68) × 10−3, Y21 = −5.01(93) × 10−5, and Y31 = −3.01(36) × 10−6 (in cm−1 and one standard deviations of the fit in parentheses). The absolute position of the A′ state is determined with good accuracy.  相似文献   

13.
High-resolution Fourier transform spectrum of phosphine (PH3) at room temperature has been recorded in the region of the 3ν2 band (2730-3100 cm−1) at an apodized resolution of 0.005 cm−1. About 200 vibration-rotation transitions have been least squares fitted with an rms of 0.00039 cm−1 after taking into account the ΔK = ±3 interaction.  相似文献   

14.
The two substates v4 = 20 (A1, 983.702 cm−1) and v4 = 2±2 (E, 986.622 cm−1) of the oblate symmetric top molecule, 14NF3, have been studied by high-resolution (2.5 × 10−3 cm−1) infrared spectroscopy of the overtones and 2ν4 − ν4 hot bands. Transitions of the overtone, the hot band, and the previously measured fundamental band were combined to yield 585 ground state combination differences differing in K by ±3, with Kmax = 36. Using the “loop-method,” a fit (standard deviation σ = 0.320 × 10−3 cm−1) provided a complete set of the hitherto not experimentally known axial ground state constants. In units of cm−1 these have the following values: . Upper state parameters were determined using a vibrationally isolated model. Considering l (2, 2) and l (2, −1) interactions between the v4 = 20 and v4 = 2±2 substates and effects accounting for the l (4, −2) interactions within the kl = −2 levels, 25 upper state parameters were obtained by fitting 2747 IR data (1842 transitions, 905 deduced energies, Jmax = 42, Kmax = 39) with σIR = 0.353 × 10−3 cm−1. Moreover, millimeter-wave spectroscopy furnished 86 transitions (Jmax = 16, Kmax = 13) measured on the v4 = 2 excited state. A merged fit, refining 24 parameters using the described model gave σIR = 0.365 × 10−3 cm−1 andσMMW = 0.855 × 10−6 cm−1 (26 kHz). The anharmonicity constants (in cm−1) are x44 = −0.84174 (2) and g44 =  + 0.73014 (1). In addition to this model, the D, Q, and L reductions of the rovibrational Hamiltonian were tested. Standard deviations σIR = 0.375 × 10−3 cm−1 and σMMW = 0.865 × 10−6 cm−1 were obtained for both D and L reductions, and σIR = 0.392 × 10−3 cm−1 and σMMW = 0.935 × 10−6 cm−1 for Q reduction. The unitary equivalence of the majority of the 18 tested relations between the derived parameters was satisfactorily fulfilled. This confirms that the v4 = 2 excited vibrational state can be considered in reasonable approximation to be isolated.  相似文献   

15.
The rovibrational spectrum of the Ne-N2O van der Waals complex has been recorded in the symmetric stretching mode region of the N2O monomer (∼1285 cm−1) using a tunable diode laser spectrometer in conjunction with an astigmatic multi-pass cell and a pulsed supersonic slit jet. The spectra of both 20Ne-N2O and 22Ne-N2O isotopomers are assigned and analyzed using a Watson S-reduced asymmetric-rotor Hamiltonian. The rotational and centrifugal constants for the excited vibrational state are accurately determined. The band-origin of the spectrum is determined to be ν0 = 1285.12251(18) cm−1 for 20Ne-N2O and 1285.12363(27) cm−1 for 22Ne-N2O, which shows a blue-shift of 0.21921 cm−1 for 20Ne-N2O and 0.22033 cm−1 for 22Ne-N2O from that of the N2O monomer, respectively.  相似文献   

16.
The high resolution absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 850-13 380 cm−1 spectral region which is the higher energy region reported so far for this water isotopologue. Very high deuterium enrichment was necessary to minimize the HDO absorption lines overlapping the D2O spectrum. The achieved sensitivity (noise equivalent absorption αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths on the order of 5 × 10−28 cm/molecule. The spectrum analysis, based on recent variational calculations has provided a set of 422 new rovibrational energy levels belonging to 11 vibrational states, including rotational sublevels for four new vibrational states and one level of the (0 9 1) highly excited bending state. The very weak (1 0 4)-(0 0 0) band at 13 263.902 cm−1, which is the highest D216O band currently observed, could be assigned despite the fact that the HDO absorption in the region is stronger by three orders of magnitude. The list of 996 D216O transitions is provided as Supplementary Material.  相似文献   

17.
We report the formation of β′-Gd2(MoO4)3 (GMO) crystal on the surface of the 21.25Gd2O3-63.75MoO3-15B2O3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm−1, 240 cm−1, 466 cm−1, 664 cm−1 and 994 cm−1which belong to the MoO3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.  相似文献   

18.
Over 8000 line positions and intensities of phosphine (PH3) at 3 μm have been measured at 0.0115 cm−1 resolution with the McMath-Pierce Fourier Transform spectrometer at Kitt Peak. The observed line intensities ranged from 4.13 × 10−6 to 4.69 × 10−2 cm−2 atm−1 at 296 K, for line positions between 2724.477 and 3601.652 cm−1. This region spans eight interacting vibrational states: 3ν2 (2940.8 cm−1), 2ν2 + ν4 (3085.6 cm−1), ν2 + 2ν4 (3214.9 cm−1), ν1 + ν2 (3307.6 cm−1), ν2 + ν3 (3310.5 cm−1), 3ν4 (∼3345 cm−1), ν1 + ν4 (3426.9 cm−1), and ν3 + ν4 (3432.9 cm−1). Assignments have been determined for all the bands except 3ν4 (a weak band in a highly congested area) for a total of 4232 transitions. The total integrated intensity for this region is 5.70 cm−2 atm−1 near 296 K, and assigned lines account for 79% of the observed absorption. The two strongest bands in the region are ν1 + ν4 and ν3 + ν4 with band strengths at 296 K of 1.61 and 2.01 cm−2 atm−1, respectively. An empirical database of PH3 line parameters (positions, intensities, and assignments) is now available. Lower state energies (corresponding to assignments from this study) and line widths from the literature are included; default values are used for unassigned features.  相似文献   

19.
The current-voltage (I-V) characteristics of Al/p-Si Schottky barrier diodes (SBDs) with native insulator layer were measured in the temperature range of 150-375 K. The estimated zero-bias barrier height ΦB0 and the ideality factor n assuming thermionic emission (TE) theory show strong temperature dependence. Evaluation of the forward I-V data reveals an increase of zero-bias barrier height ΦB0 but decrease of ideality factor n with increase in temperature. The conventional Richardson plot exhibits non-linearity below 250 K with the linear portion corresponding to activation energy of 0.41 eV and Richardson constant (A*) value of 1.3 × 10−4 A cm−2 K−2 is determined from intercept at the ordinate of this experimental plot, which is much lower than the known value of 32 A cm2 K2 for holes in p-type Si. Such behavior is attributed to Schottky barrier inhomogene ties by assuming a Gaussian distribution of barrier heights (BHs) due to barrier height inhomogeneities that prevail at interface. Also, ΦB0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of ΦB0 = 1.055 eV and σ0 = 0.13 V for the mean BH and zero-bias standard deviation have been obtained from this plot, respectively. Thus, the modified versus q/kT plot gives ΦB0 and A* as 1.050 eV and 40.08 A cm−2 K−2, respectively, without using the temperature coefficient of the barrier height. This value of the Richardson constant 40.03 A cm−2 K−2 is very close to the theoretical value of 32 A K−2 cm−2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/p-Si Schottky barrier diodes with native insulator layer can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights.  相似文献   

20.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号