首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
0引言Ⅰ-Ⅲ-Ⅵ2族半导体薄膜太阳能电池具有价格低廉、性能优良和工艺简单等优点,已成为最有希望的光电转换器件,是当前国际光伏电池研究领域的热点之一。在Ⅰ-Ⅲ-Ⅵ2族半导体中,CuInS2因其光学禁带宽度适中(1.50eV),可见光区域吸收系数较高(6×105cm-1),化学稳定性好等特点而成为人们最为关注的薄膜太阳能电池材料之一[1~5]。目前,CuInS2薄膜太阳能电池的最高转换效率约为11%[6,7],距理论转换效率(27%~32%)[8]还有很大的差距,而改善CuInS2薄膜质量是提高其光电转换效率的关键。研究表明,CuInS2薄膜的制备技术及工艺条件对薄膜的结构…  相似文献   

2.
光电催化分解水系统能直接将收集的电子与空穴用于分解水,将太阳能转化成了具有高能量密度的氢气,是一种集太阳能转化和储存于一体的高效绿色能源系统。光阴极和光阳极串联要求其在工作状态下两电极通过的总电流必须一致,低效率的一端将会限制整个体系的反应速度,因此对于光阳极材料的系统研究具有十分重要的意义。理论预测表明,基于部分可见光响应的半导体光阳极能带间隙计算得到的极限太阳能制氢转化效率达到了15%。但实际上由于光催化的整个过程是一个多步反应,各个步骤上发生的光生载流子的复合和损失导致了目前合成的相关电极材料的转换效率远低于理论水平。一般可以认为光催化过程包括五个步骤:光电极材料中电子的光致激发而产生电子-空穴对、电子和空穴由于能带弯曲的反向分离和传递、电子(或空穴)通过半导体-电解液界面的注入水中析氢(或析氧)、载流子的复合以及反应物和产物的传质过程。由于这些过程的进行效率与电极材料的本质特性和性能密切相关,为了评估材料性能而引入的一些效率指标往往和这几个步骤相对应。本文首先简要介绍了评价光阳极的一些效率计算以及它们与上述各个步骤的内在联系。最后,在前人和最近的研究基础上总结了几种对光阳极材料的主要提升策略,包括形貌控制、元素掺杂、异(同)质结和表面修饰等改性方法,对这些改性方法和各步骤效率之间的联系作了简单的介绍。  相似文献   

3.
电化学沉积是半导体薄膜制备的一种简便方法,常用于Ⅱ-族化合物半导体薄膜的制备.通过电沉积条件的适当改变可成功地在导电衬底上制备半导体纳晶薄膜[1].CdSe薄膜作为一种透光性好、导电性好的半导体材料,可进行光学性能和光电性能方面的研究,而半导体纳晶多孔电极的光电化学特性与体材料之间有很大不同.本文采用电化学沉积法制备了CdSe纳晶薄膜并研究了其性能,通过扫描隧道显微镜(STM)形貌分形分析进一步研究其沉积机理.  相似文献   

4.
TiO2包覆不同微结构纳米碳纤维薄膜电极的光电化学性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了TiO2包覆不同微结构的纳米碳纤维(Carbon nanofibers, CNF), 包括板式纳米碳纤维(Platelet-CNF, PCNF)和鱼骨式纳米碳纤维(Fish-bone-CNF, FCNF)的复合薄膜电极. 用光电流作用谱和光电流-电势图等方法研究了复合薄膜电极的光电化学性能. 研究结果表明, 复合薄膜电极表现出n型半导体特征, 薄膜中CNF的存在有助于光生电子和空穴有效地分离, 提高了光电转换效率, TiO2包覆PCNF薄膜电极在可见光范围内存在明显的光电响应.  相似文献   

5.
半导体材料CdS薄膜具有优良的光电特性,一直受到人们的关注,广泛用于许多无机薄膜太阳电池的n型窗口层[1,2]。用CdS薄膜组装的光电化学电池也一度引起人们的极大兴趣。二十世纪七十年代以来,半导体光电化学在光能-电能转换、光能-化学能转换和太阳能的光电化学利用方面得到了蓬  相似文献   

6.
近几十年来,光电化学分解水制氢作为一种洁净的、能持续利用太阳能的技术受到极大关注.在众多光催化材料中,P型半导体氧化亚铜(Cu_2O)被认为是最有前途的可见光光电分解水材料之一.理论上,它的光能转换为氢能的效率可达到18.7%.然而,目前所报道的Cu_2O光转换效率远远低于此值;同时,纯Cu_2O在光照条件下的稳定性较差.研究表明,Cu_2O与其它半导体复合可以增强其光电转换效率和提高稳定性.如Cu_2O和能带匹配的石墨相氮化碳(g-C_3N_4)复合后,光催化性能和稳定性都有较大提高.但目前所报道的Cu_2O/g-C_3N_4复合物几乎都是粉末状催化剂,不便于回收和重复使用.本文首先采用电化学方法在FTO导电玻璃上沉积Cu_2O薄膜,采用溶胶凝胶法制备g-C_3N_4纳米颗粒材料,然后采用电化学法在Cu_2O薄膜表面沉积一层g-C_3N_4纳米颗粒,得到了Cu_2O/g-C_3N_4异质结膜.分别利用X射线粉末衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、紫外可见光谱(UV-Vis)和光电化学分解水实验分析了Cu_2O/g-C_3N_4异质结的组成结构、表面形貌、光吸收性能及催化剂活性和稳定性.XRD和HRTEM表征显示,本文成功合成了Cu_2O/g-C_3N_4异质结材料,SEM图表明g-C_3N_4纳米颗粒在Cu_2O表面分布均匀,大小均一.可见光光电化学分解水结果显示,异质结薄膜的光电化学性能比纯的Cu_2O和g-C_3N_4薄膜材料有极大提高.当在Cu_2O表面沉积g-C_3N_4的时间为15 s时,得到样品Cu_2O/g-C_3N_4-15异质结膜,其在-0.4 V和可见光照射条件下,光电流密度达到了-1.38 mA/cm~2,分别是纯Cu_2O和g-C_3N_4薄膜材料的19.7和6.3倍.产氢速率也达到了0.48 mL h~(-1)cm~(-2),且产氢和产氧的速率之比约为2,说明此异质结材料在可见光作用下能全分解水.经过三次循环实验,光电化学分解水的效率仅降低10.8%,表明该材料具有良好的稳定性.根据UV-Vis表征和光电化学性能对比,Cu_2O/g-C_3N_4-15的光电性能最好,但其光吸收性能并不是最好,说明光电化学性能与光吸收不是成正比关系,主要是由于Cu_2O和g-C_3N_4两个半导体相互起到了协同作用.机理分析表明,Cu_2O/g-C_3N_4异质结薄膜在光照下,由于两者能带匹配,Cu_2O的光生电子从其导带转移到g-C_3N_4的导带上,g-C_3N_4价带上的空隙转移到Cu_2O的价带上,从而降低了光生电子和空隙的复合,提高了其光催化性能.由于g-C_3N_4的导带位置高于H_2O(或H~+)还原为H_2的电势,Cu_2O的价带位置低于H_2O(或OH-)还原为O_2的电势,所以在外加-0.4V偏压和可见光照射条件下,Cu_2O/g-C_3N_4能全分解水,光生载流子越多,光电化学分解水的速率越大.综上所述,在Cu_2O薄膜上沉积g-C_3N_4后得到的异质结薄膜具有高效的光能转换为氢能性能.  相似文献   

7.
程翔  毕迎普 《分子催化》2020,34(4):341-365
光电催化水分解制氢是目前解决能源危机与环境污染最理想的技术之一.设计和构筑高效的光阳极是实现光电催化技术实际应用的关键.在众多半导体光阳极材料中,TiO_2纳米阵列由于其快的电荷传输速率,高的光热稳定性,无毒和成本低等优点,已经被广泛用于光电催化水分解反应的研究.但是TiO_2本征的光吸收范围窄、光生电荷复合率高、表面水氧化动力学缓慢严重地制约了其太阳能-氢能转换效率.我们结合近年来国内外及本课题组的研究工作详细论述了TiO_2纳米阵列的改性策略,主要包括利用元素掺杂来拓展TiO_2的光吸收范围并提高导电性,构筑异质结促进光电极电荷的分离与转移,半导体敏化增加光电极的可见光吸收并促进电荷转移,表面处理用于增加表面水氧化反应速率.最后指出了该材料发展现状,并对其发展前景做出展望.我们为进一步提高TiO_2纳米阵列的光电催化水分解活性提供了理论指导和实践借鉴.  相似文献   

8.
李仁贵 《催化学报》2017,38(1):5-12
能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO3:La,Rh/Au/BiVO4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO4和Ta3N5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta3N5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破.  相似文献   

9.
能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO_2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO_3:La,Rh/Au/BiVO_4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO_4和Ta_3N_5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta_3N_5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破.  相似文献   

10.
近几十年来,光电化学分解水制氢作为一种洁净的、能持续利用太阳能的技术受到极大关注.在众多光催化材料中,p型半导体氧化亚铜(Cu2O)被认为是最有前途的可见光光电分解水材料之一.理论上,它的光能转换为氢能的效率可达到18.7%.然而,目前所报道的Cu2O光转换效率远远低于此值;同时,纯Cu2O在光照条件下的稳定性较差.研究表明,Cu2O与其它半导体复合可以增强其光电转换效率和提高稳定性.如Cu2O和能带匹配的石墨相氮化碳(g-C3N4)复合后,光催化性能和稳定性都有较大提高.但目前所报道的Cu2O/g-C3N4复合物几乎都是粉末状催化剂,不便于回收和重复使用.本文首先采用电化学方法在FTO导电玻璃上沉积Cu2O薄膜,采用溶胶凝胶法制备g-C3N4纳米颗粒材料,然后采用电化学法在Cu2O薄膜表面沉积一层g-C3N4纳米颗粒,得到了Cu2O/g-C3N4异质结膜.分别利用X射线粉末衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、紫外可见光谱(UV-Vis)和光电化学分解水实验分析了Cu2O/g-C3N4异质结的组成结构、表面形貌、光吸收性能及催化剂活性和稳定性.XRD和HRTEM表征显示,本文成功合成了Cu2O/g-C3N4异质结材料,SEM图表明g-C3N4纳米颗粒在Cu2O表面分布均匀,大小均一.可见光光电化学分解水结果显示,异质结薄膜的光电化学性能比纯的Cu2O和g-C3N4薄膜材料有极大提高.当在Cu2O表面沉积g-C3N4的时间为15 s时,得到样品Cu2O/g-C3N4-15异质结膜,其在–0.4 V和可见光照射条件下,光电流密度达到了–1.38 mA/cm2,分别是纯Cu2O和g-C3N4薄膜材料的19.7和6.3倍.产氢速率也达到了0.48 mL h–1 cm–2,且产氢和产氧的速率之比约为2,说明此异质结材料在可见光作用下能全分解水.经过三次循环实验,光电化学分解水的效率仅降低10.8%,表明该材料具有良好的稳定性.根据UV-Vis表征和光电化学性能对比,Cu2O/g-C3N4-15的光电性能最好,但其光吸收性能并不是最好,说明光电化学性能与光吸收不是成正比关系,主要是由于Cu2O和g-C3N4两个半导体相互起到了协同作用.机理分析表明,Cu2O/g-C3N4异质结薄膜在光照下,由于两者能带匹配,Cu2O的光生电子从其导带转移到g-C3N4的导带上,g-C3N4价带上的空隙转移到Cu2O的价带上,从而降低了光生电子和空隙的复合,提高了其光催化性能.由于g-C3N4的导带位置高于H2O(或H+)还原为H2的电势,Cu2O的价带位置低于H2O(或OH–)还原为O2的电势,所以在外加–0.4 V偏压和可见光照射条件下,Cu2O/g-C3N4能全分解水,光生载流子越多,光电化学分解水的速率越大.综上所述,在Cu2O薄膜上沉积g-C3N4后得到的异质结薄膜具有高效的光能转换为氢能性能.  相似文献   

11.
传统的分子材料光电器件如太阳能电池和有机发光二极管通常采用"三明治"型垂直结构.器件通常由透明底电极、薄膜活性层和顶接触电极构成.该结构优化了光与半导体的相互作用以及载流子的注入和收集,实际应用广泛.近些年,为了降低透明电极的使用成本以及更好地实现非薄膜形态纳米半导体材料的器件构筑,一些非"三明治"结构的有机光电器件也取得了很大进展:发展出了具有微米、纳米电极结构的光伏器件、光电导器件、光晶体管器件、纳米间隙电极器件等,拓展了分子基光电材料的应用研究,与传统夹心型二极管器件相互补充、相互完善.本文主要聚焦在各种非"三明治"结构有机光电器件的构筑与功能化,对有代表性的研究成果进行了总结与评述,并对其未来的发展进行了展望.  相似文献   

12.
倪鑫  周扬  谭瑞琴  况永波 《化学进展》2020,32(10):1515-1534
由n型半导体光阳极和p型半导体光阴极组成的无偏压光电化学电池通过太阳能可以将水直接转化为高能量密度的氢气,为解决太阳能利用过程中存在的间歇性和储存问题提供了一种潜在的经济有效的解决途径。金属氧化物具有低成本和易制备等优势,相比于发展较成熟的n型光阳极金属氧化物材料,传统的p型光阴极金属氧化物材料由于金属离子易受到光电腐蚀的影响,光电极寿命的提升是个很大的挑战。作为新型的金属氧化物光阴极材料,铁酸盐具有合适的带隙、较好的光稳定性、较正的起始电位以及较低的制备成本,正在成为光电化学电池实际应用中的有力竞争者。本文阐述了光电化学水分解的基本原理与提升光电极性能的一般方法,总结了近年来颇受关注的代表性铁酸盐光阴极材料CuFeO2、CaFeO4与LaFeO3在制备方法、元素掺杂以及表面修饰等方面取得的重要进展,并对铁酸盐光阴极的未来发展趋势做了展望。  相似文献   

13.
近年来,半导体纳晶多孔薄膜作为一类重要的纳米结构材料,其光电化学性质及功能特性的研究受到人们广泛关注。由于量子尺寸效应及介电限域效应,它们的光物理、光电化学性质以及电荷传输机理明显异于多晶及单晶体材料。通过简便快捷的涂敷、浸涂或溅射等方法,半导体纳晶多孔薄膜可以在导电衬底上形成。这些薄膜具有高度多孔性、大比表面,易于用有机功能分子或半导体超微粒进行表面修饰[1-2],在太阳能转换[2]、光电子器件或电子变色器件[3]及光催化治理环境污染[4]等方面具有潜在的应用前景。因此,在光电化学、半导体物理及材料科学领域里研究十分活跃。本文采用涂敷及浸涂提拉方法制备了四种具有不同多孔率及比表面的TiO2薄膜电极,并对其晶型、表面形貌微结构及光电化学性能进行了研究。  相似文献   

14.
光电化学水分解电池能够将太阳能直接转化为氢能,是一种理想的太阳能利用方式. p-n叠层电池具有理论转换效率高、成本低廉、材料选择灵活等优势,被认为是最有潜力的一类光电化学水分解电池. 然而,目前这类叠层电池的太阳能转化效率还不高,主要原因是单个电极的效率太低. 本文介绍了几种提高光电极分解水性能的方法--减小光生载流子的体相复合、表面复合以及抑制背反应等,同时综述了国内外关于几种p型半导体光阴极的研究进展,如Si、InP、CuIn1-x GaxS(Se)2、Cu2ZnSnS4等. 通过总结,作者提出一种p-Cu2ZnSnS4(CuIn1-xGaxS(Se)2)/n-Ta3N5(Fe2O3) 组装方式,有望获得高效低成本叠层光电化学水分解电池.  相似文献   

15.
与传统的Ⅱ-Ⅵ族和Ⅲ-Ⅴ族半导体化合物相比,硅量子点性质独特,不仅无毒无害、环境友好,而且储量丰富,可以大量生产,目前已在光电子学、太阳能转换、生物传感器、荧光探针等方面具有广泛的应用.本文作者对液相合成方法、高温气相还原法和热分解法制备硅量子点进行了综述,并对硅量子点在光电器件领域的应用前景进行了展望.  相似文献   

16.
利用半导体光电催化分解水制氢是将太阳能转化为化学能的有效途径之一,具有重要的科学意义和巨大的应用前景.铁基半导体具有光谱响应范围广、绿色环保和价格低廉等优点,是具应用前景的光阳极材料之一.在铁基半导体中,α-Fe2O3光阳极的光电催化性能已经被广泛报道,亚稳相氧化铁的光电催化性能尚未有深入研究.本课题组曾经报道用于光电催化分解水的亚稳相β-Fe2O3颗粒组装膜光阳极[Natl.Sci.Rev.,2020,7,1059–1067].β-Fe2O3光阳极的太阳能-氢能理论转化效率为20.9%,优于α-Fe2O3光阳极.β-Fe2O3的热稳定性和在长时间光电催化反应过程中的光化学稳定性是决定其应用前景的核心问题.本文报道了一种喷雾热裂解制备β-Fe2O3薄膜的方法.该方法提高了β-Fe2O3的热稳定性,从而提高了β-Fe2O3在长时间光电化学反应中的光电化学稳定性.与电泳沉积方法制备的β-Fe2O3颗粒组装膜相比,利用喷雾热裂解法制备的亚稳相β-Fe2O3薄膜的热稳定性得到显著增加.物相表征结果表明,经过相同的煅烧处理或者激光辐照后,电泳沉积方法制备的β-Fe2O3颗粒组装膜发生了明显相变;而由喷雾热裂解制备的β-Fe2O3平板膜依旧保持稳定,没有发生相变.β-Fe2O3薄膜与衬底之间存在较高的应力,与颗粒组装膜相比,平板膜在退火热处理与激光辐照下都表现出更好的稳定性.β-Fe2O3薄膜与衬底之间的应力增加了亚稳相β-Fe2O3的相变势垒,提高了β-Fe2O3的相变温度.通过引入Ti4+掺杂提高载流子浓度,改善载流子传输,使得β-Fe2O3光阳极的光电催化性能提升了3倍.结果表明,β-Fe2O3光阳极薄膜具有良好的光化学稳定性,其光电催化分解水性能在模拟太阳光条件下工作110 h后未出现明显的衰减.本文提出了一种增加亚稳相β-Fe2O3热稳定性的方法,β-Fe2O3光阳极具有较好的光化学稳定性,在光电催化方面具有较好的应用前景.  相似文献   

17.
半导体量子点因其独特的光电性质, 在发光二极管、太阳能电池和生物标记等领域展现出广阔的应用前景。传统的Ⅱ-Ⅵ和Ⅲ-Ⅴ族二元量子点具有优异的发光性能, 但其所含的Cd、Pb等有毒重金属元素极大制约了大规模商业应用。Ⅰ-Ⅲ-Ⅵ 族多元量子点作为近年来兴起的一类新型荧光材料, 其具有无毒、带隙可调、Stokes位移大、荧光寿命长等特性, 被认为是替代传统二元量子点的理想材料, 因此成为了科研工作者研究的热点。本文详细介绍了Ⅰ-Ⅲ-Ⅵ 族量子点的研究进展, 从该类量子点的基本性质出发阐明其光学性能的调控机制, 重点介绍了近年来该类量子点的有机相及水相制备技术, 对其在照明显示领域应用的研究进展进行了总结, 并与其他类型量子点器件的最新研究现状进行了对比。最后, 分析了Ⅰ-Ⅲ-Ⅵ 族量子点发展过程中有待解决的主要问题, 并对其今后的发展方向进行了展望。  相似文献   

18.
光电化学电池(如染料敏化太阳能电池、量子点敏化太阳能电池以及光电化学水分解电池)是实现太阳能转化及存储的有效手段之一.其中,光电极是光电化学电池的核心组成部分,它集光吸收、光生电荷输运及转移等决定光转化效率的关键过程于一身,因此构筑高活性半导体光电极以实现高效太阳能转化利用引起研究者广泛关注.多孔TiO2纳米颗粒堆垛薄膜光阳极因具有大的比表面积,可提供更多的染料(量子点)担载和反应活性位点,在光电化学电池中表现出优异活性而被广泛研究.然而, TiO2纳米颗粒间大量存在的晶界对光生电荷有较强的散射作用,降低了光生电荷的收集效率.英国牛津大学Snaith研究小组利用模板辅助水热过程首次获得了(001)晶面占优的多孔单晶锐钛矿TiO2微米颗粒,这种多孔单晶TiO2微米颗粒在具有大比表面积的同时,其单晶结构还能有效去除晶界对电荷的散射作用,因而具有优异的电荷输运特性.利用这种多孔单晶TiO2微米颗粒组建的光阳极用于染料敏化太阳能电池中,展现出优异的太阳能光电转化性能.受该工作启发,各种形貌的多孔单晶TiO2微米颗粒作为光催化剂和光电化学分解水用光阳极材料被广泛研究,并表现出优异活性.在单晶微米颗粒堆垛成的薄膜光电极中,虽然单个单晶微米颗粒中晶界对电荷的散射作用被有效抑制,但是单晶颗粒间的晶界仍然存在并影响光生电荷的收集效率.为了彻底抑制晶界对光生电荷的散射作用,每个单晶颗粒都应该贯穿整个薄膜,例如一维TiO2纳米棒单晶阵列薄膜.虽然一维单晶阵列薄膜能够有效提高光生电荷的收集效率,但相对于多孔薄膜具有较小的比表面积,限制了担载染料(量子点)和反应位点的数量.为了增大TiO2单晶纳米棒阵列薄膜的比表面积,目前主要的手段包括调控纳米棒长径比、表面修饰TiO2纳米颗粒以及二次生长构建TiO2枝晶阵列.本文首次提出通过制备多孔单晶TiO2纳米棒单晶阵列薄膜来获得高比表面积和高光生电荷收集效率的光阳极,提高光电化学电池的效率.在透明导电薄膜(FTO)表面利用水热生长TiO2纳米棒阵列薄膜之前,预先在FTO基体上沉积一层SiO2球密堆模板, TiO2纳米棒单晶阵列在从FTO表面向上生长过程中,会将SiO2球模板包裹进TiO2纳米棒中,再通过碱溶液将SiO2球模板溶解,首次在FTO基体上原位生长出多孔单晶TiO2纳米棒阵列薄膜.将所得多孔单晶金红石TiO2纳米棒阵列薄膜作为光电化学分解水电池光阳极,其光电化学分解水活性相对于实心单晶金红石TiO2纳米棒阵列提高了2.6倍.多孔单晶金红石TiO2纳米棒阵列光阳极性能的提升可归因于:(1)多孔结构赋予多孔单晶金红石TiO2纳米棒阵列薄膜更大的比表面积,可提供更多的反应活性位点;(2)多孔结构能够有效缩短单晶金红石TiO2纳米棒中光生电荷体相输运距离,提高光生电荷的收集效率;(3)多孔结构通过对光多次反射吸收可有效增强光吸收,产生更多光生电荷参与水分解反应;(4)在制备过程中引入Si掺杂,导致多孔单晶金红石TiO2纳米棒带隙扩大了0.1 eV,带隙增大归因于导带位置负移0.1 eV,光生电子具有更强的还原能力,光电流起始电位相应负移约0.1 V.  相似文献   

19.
光电化学电池(如染料敏化太阳能电池、量子点敏化太阳能电池以及光电化学水分解电池)是实现太阳能转化及存储的有效手段之一.其中,光电极是光电化学电池的核心组成部分,它集光吸收、光生电荷输运及转移等决定光转化效率的关键过程于一身,因此构筑高活性半导体光电极以实现高效太阳能转化利用引起研究者广泛关注.多孔Ti O2纳米颗粒堆垛薄膜光阳极因具有大的比表面积,可提供更多的染料(量子点)担载和反应活性位点,在光电化学电池中表现出优异活性而被广泛研究.然而,TiO 2纳米颗粒间大量存在的晶界对光生电荷有较强的散射作用,降低了光生电荷的收集效率.英国牛津大学Snaith研究小组利用模板辅助水热过程首次获得了(001)晶面占优的多孔单晶锐钛矿Ti O2微米颗粒,这种多孔单晶Ti O2微米颗粒在具有大比表面积的同时,其单晶结构还能有效去除晶界对电荷的散射作用,因而具有优异的电荷输运特性.利用这种多孔单晶Ti O2微米颗粒组建的光阳极用于染料敏化太阳能电池中,展现出优异的太阳能光电转化性能.受该工作启发,各种形貌的多孔单晶Ti O2微米颗粒作为光催化剂和光电化学分解水用光阳极材料被广泛研究,并表现出优异活性.在单晶微米颗粒堆垛成的薄膜光电极中,虽然单个单晶微米颗粒中晶界对电荷的散射作用被有效抑制,但是单晶颗粒间的晶界仍然存在并影响光生电荷的收集效率.为了彻底抑制晶界对光生电荷的散射作用,每个单晶颗粒都应该贯穿整个薄膜,例如一维Ti O2纳米棒单晶阵列薄膜.虽然一维单晶阵列薄膜能够有效提高光生电荷的收集效率,但相对于多孔薄膜具有较小的比表面积,限制了担载染料(量子点)和反应位点的数量.为了增大TiO 2单晶纳米棒阵列薄膜的比表面积,目前主要的手段包括调控纳米棒长径比、表面修饰Ti O2纳米颗粒以及二次生长构建Ti O2枝晶阵列.本文首次提出通过制备多孔单晶Ti O2纳米棒单晶阵列薄膜来获得高比表面积和高光生电荷收集效率的光阳极,提高光电化学电池的效率.在透明导电薄膜(FTO)表面利用水热生长Ti O2纳米棒阵列薄膜之前,预先在FTO基体上沉积一层Si O2球密堆模板,Ti O2纳米棒单晶阵列在从FTO表面向上生长过程中,会将SiO 2球模板包裹进Ti O2纳米棒中,再通过碱溶液将Si O2球模板溶解,首次在FTO基体上原位生长出多孔单晶Ti O2纳米棒阵列薄膜.将所得多孔单晶金红石Ti O2纳米棒阵列薄膜作为光电化学分解水电池光阳极,其光电化学分解水活性相对于实心单晶金红石Ti O2纳米棒阵列提高了2.6倍.多孔单晶金红石Ti O2纳米棒阵列光阳极性能的提升可归因于:(1)多孔结构赋予多孔单晶金红石Ti O2纳米棒阵列薄膜更大的比表面积,可提供更多的反应活性位点;(2)多孔结构能够有效缩短单晶金红石Ti O2纳米棒中光生电荷体相输运距离,提高光生电荷的收集效率;(3)多孔结构通过对光多次反射吸收可有效增强光吸收,产生更多光生电荷参与水分解反应;(4)在制备过程中引入Si掺杂,导致多孔单晶金红石Ti O2纳米棒带隙扩大了0.1 e V,带隙增大归因于导带位置负移0.1 e V,光生电子具有更强的还原能力,光电流起始电位相应负移约0.1 V.  相似文献   

20.
为了解决能源危机与环境污染问题,发展一种可再生的清洁能源至关重要.太阳能是一种取之不尽用之不竭的清洁能源,而氢气是一种良好的能源载体.利用太阳能光电催化水分解制氢,是一项有望能够解决能源与环境问题的技术,具有很大的应用前景.其中,氧化铁因为具有合适的能带位置与带隙、良好的稳定性与廉价无毒等优点,成为一种理想的光阳极材料.但是,在实际的测试中,氧化铁仅仅只能得到一个较低的光电转换效率,这可能是因为其较短的空穴扩散距离、较低的电导率以及极度缓慢的水氧化反应动力学所致.整个光电催化水氧化可分为三个过程,即光吸收过程、电荷分离过程以及表面空穴注入过程.这三个过程的效率共同决定了器件的太阳能转化效率.鉴于此,本文将从如何提高这三个效率的角度出发,总结近期研究报道中提高氧化铁光电催化分解水效率的一些策略.光吸收过程是指半导体中价带的电子在吸收具有一定能量的光子后发生跃迁,产生空穴-电子对的过程.其光子的损失主要来源于光的反射、透射以及半导体吸收边的限制.提高光吸收效率的主要策略包括制备具有特定纳米结构的氧化铁电极、利用表面等离子体共振效应以及组成双光吸收系统和掺杂等.电荷分离过程指的是受光激发产生的空穴电子对,在内建电场的作用下发生电荷分离,即光生空穴流向电极表面,光生电子流向半导体内部并从外电路导出.电荷分离效率的损失主要来源于光生载流子在迁移过程中的复合.因此,为了提高电荷分离效率,常见的策略是提高载流子在电荷分离过程中的复合时间τ_1和减少电荷迁移到表面(空穴)或者基底(电子)的时间τ_2.具体的策略包括制备特定的纳米结构(缩短体表相距离,减少τ_2)、构建异质结(增强能带弯曲,提高τ_1和减少τ_2)、掺杂(减少τ_2)和钝化复合中心(提高τ_1)等.表面空穴注入是指到达表面的光生空穴发生水氧化反应生成氧气的过程.除了空穴注入外,表面还可能存在复合与逆反应过程.因此,为了提高表面空穴注入效率,我们既可以提高水氧化反应动力学,具体的手段包括引入水氧化催化剂、F掺杂和碱处理等;也可以采用减少复合反应的策略,具体的方法包括引入钝化层、酸处理和高温热处理等;还可以采用减少逆反应的方法,最常见的手段就是在基底与氧化铁层之间引入电子阻挡层.上述三种途径都能提高表面空穴注入效率.最后,通过结合上述的一些策略,目前得到的最高性能的氧化铁电极在1.23 V(相对于可逆氢电极)能够达到6 mAcm-2的光电催化分解水电流,但这个值依然明显低于氧化铁的理论值(12.6 mAcm~(-2)).这可能是由于体相复合所致.除此之外,氧化铁表面的水氧化机理现在依然不清晰,这些都是需要我们在未来解决的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号