首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let us call a digraph D cycle-connected if for every pair of vertices u,vV(D) there exists a cycle containing both u and v. In this paper we study the following open problem introduced by Ádám. Let D be a cycle-connected digraph. Does there exist a universal edge in D, i.e., an edge eE(D) such that for every wV(D) there exists a cycle C such that wV(C) and eE(C)?In his 2001 paper Hetyei conjectured that cycle-connectivity always implies the existence of a universal edge. In the present paper we prove the conjecture of Hetyei for bitournaments.  相似文献   

2.
A digraph D = (V(D), A(D)) is called cycle-connected if for every pair of vertices ${u, v\in V(D)}$ there exists a cycle containing both u and v. Ádám (Acta Cybernet 14(1):1–12, 1999) proposed the question: Let D be a cycle-connected digraph. Does there exist a universal arc in D, i.e., an arc ${e\in A(D)}$ such that for every vertex ${w\in V(D)}$ there exists a cycle C in D containing both e and w?. Recently, Lutz Volkmann and Stefan Winzen have proved that this conjecture is true for multipartite tournaments. As an improvement of this result, we show in this note that every cycle-connected multipartite tournament with δ ≥ 2 contains at least two universal arcs.  相似文献   

3.
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively.A kernel N of D is an independent set of vertices such that for every wV(D)-N there exists an arc from w to N. A digraph is called quasi-transitive when (u,v)∈A(D) and (v,w)∈A(D) implies (u,w)∈A(D) or (w,u)∈A(D). This concept was introduced by Ghouilá-Houri [Caractérisation des graphes non orientés dont on peut orienter les arrêtes de maniere à obtenir le graphe d’ un relation d’ordre, C.R. Acad. Sci. Paris 254 (1962) 1370-1371] and has been studied by several authors. In this paper the following result is proved: Let D be a digraph. Suppose D=D1D2 where Di is a quasi-transitive digraph which contains no asymmetrical infinite outward path (in Di) for i∈{1,2}; and that every directed cycle of length 3 contained in D has at least two symmetrical arcs, then D has a kernel. All the conditions for the theorem are tight.  相似文献   

4.
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph. In 1991, Jian-zhong Wang conjectured that every arc of a regular 3-partite tournament D is contained in directed cycles of all lengths 3,6,9,…,|V(D)|. This conjecture is not valid, because for each integer t with 3?t?|V(D)|, there exists an infinite family of regular 3-partite tournaments D such that at least one arc of D is not contained in a directed cycle of length t.In this paper, we prove that every arc of a regular 3-partite tournament with at least nine vertices is contained in a directed cycle of length m, m+1, or m+2 for 3?m?5, and we conjecture that every arc of a regular 3-partite tournament is contained in a directed cycle of length m, (m+1), or (m+2) for each m∈{3,4,…,|V(D)|-2}.It is known that every regular 3-partite tournament D with at least six vertices contains directed cycles of lengths 3, |V(D)|-3, and |V(D)|. We show that every regular 3-partite tournament D with at least six vertices also has a directed cycle of length 6, and we conjecture that each such 3-partite tournament contains cycles of all lengths 3,6,9,…,|V(D)|.  相似文献   

5.
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph.In 1999, Yeo conjectured that each regular c-partite tournament D with c≥4 and |V(D)|≥10 contains a pair of vertex disjoint directed cycles of lengths 5 and |V(D)|−5. In this paper we shall confirm this conjecture using a computer program for some cases.  相似文献   

6.
A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph.For c?2 we prove that a regular c-partite tournament with r?2 vertices in each partite set contains a directed path with exactly two vertices from each partite set. Furthermore, if c?4, then we will show that almost all regular c-partite tournaments D contain a directed path with exactly r-s vertices from each partite set for each given integer sN, if r is the cardinality of each partite set of D. Some related results are also presented.  相似文献   

7.
In this paper, D=(V(D),A(D)) denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of V(D). Given a digraph D, we say that D is 3-quasi-transitive if, whenever uvwz in D, then u and z are adjacent or u=z. In Bang-Jensen (2004) [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and strong semicomplete bipartite digraphs. In this paper, we exhibit a family of strong 3-quasi-transitive digraphs distinct from strong semicomplete digraphs and strong semicomplete bipartite digraphs and provide a complete characterization of strong 3-quasi-transitive digraphs.  相似文献   

8.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). For a fixed digraph H, the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H).An optimization version of the homomorphism problem was motivated by a real-world problem in defence logistics and was introduced in Gutin, Rafiey, Yeo and Tso (2006) [13]. If each vertex uV(D) is associated with costs ci(u),iV(H), then the cost of the homomorphism f is ∑uV(D)cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem forH and denote it as MinHOM(H). The problem is to decide, for an input graph D with costs ci(u),uV(D),iV(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost.Although a complete dichotomy classification of the complexity of MinHOM(H) for a digraph H remains an unsolved problem, complete dichotomy classifications for MinHOM(H) were proved when H is a semicomplete digraph Gutin, Rafiey and Yeo (2006) [10], and a semicomplete multipartite digraph Gutin, Rafiey and Yeo (2008) [12] and [11]. In these studies, it is assumed that the digraph H is loopless. In this paper, we present a full dichotomy classification for semicomplete digraphs with possible loops, which solves a problem in Gutin and Kim (2008) [9].  相似文献   

9.
If D is a digraph, then we denote by V(D) its vertex set. A multipartite or c-partite tournament is an orientation of a complete c-partite graph. The global irregularity of a digraph D is defined by
  相似文献   

10.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism ofDtoH if uvA(D) implies f(u)f(v)∈A(H). For a fixed directed or undirected graph H and an input graph D, the problem of verifying whether there exists a homomorphism of D to H has been studied in a large number of papers. We study an optimization version of this decision problem. Our optimization problem is motivated by a real-world problem in defence logistics and was introduced recently by the authors and M. Tso.Suppose we are given a pair of digraphs D,H and a cost ci(u) for each uV(D) and iV(H). The cost of a homomorphism f of D to H is ∑uV(D)cf(u)(u). Let H be a fixed digraph. The minimum cost homomorphism problem for H, MinHOMP(H), is stated as follows: For input digraph D and costs ci(u) for each uV(D) and iV(H), verify whether there is a homomorphism of D to H and, if it does exist, find such a homomorphism of minimum cost. In our previous paper we obtained a dichotomy classification of the time complexity of when H is a semicomplete digraph. In this paper we extend the classification to semicomplete k-partite digraphs, k≥3, and obtain such a classification for bipartite tournaments.  相似文献   

11.
A domination graph of a digraph D, dom(D), is created using the vertex set of D and edge {u,v}∈E[dom(D)] whenever (u,z)∈A(D) or (v,z)∈A(D) for every other vertex zV(D). The underlying graph of a digraph D, UG(D), is the graph for which D is a biorientation. We completely characterize digraphs whose underlying graphs are identical to their domination graphs, UG(D)=dom(D). The maximum and minimum number of single arcs in these digraphs, and their characteristics, is given.  相似文献   

12.
Let D be an edge-coloured digraph, V(D) will denote the set of vertices of D; a set NV(D) is said to be a kernel by monochromatic paths of D if it satisfies the following two conditions: For every pair of different vertices u,vN there is no monochromatic directed path between them and; for every vertex xV(D)−N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we consider some operations on edge-coloured digraphs, and some sufficient conditions for the existence or uniqueness of kernels by monochromatic paths of edge-coloured digraphs formed by these operations from another edge-coloured digraphs.  相似文献   

13.
An arc uv of a digraph D is called universal if uv and w are in a common cycle for any vertex w of D. In this paper we characterize local tournaments whose every arc is universal.  相似文献   

14.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). Let H be a fixed directed or undirected graph. The homomorphism problem for H asks whether a directed or undirected input graph D admits a homomorphism to H. The list homomorphism problem for H is a generalization of the homomorphism problem for H, where every vertex xV(D) is assigned a set Lx of possible colors (vertices of H).The following optimization version of these decision problems generalizes the list homomorphism problem and was introduced in Gutin et al. [Level of repair analysis and minimum cost homomorphisms of graphs, Discrete Appl. Math., to appear], where it was motivated by a real-world problem in defence logistics. Suppose we are given a pair of digraphs D,H and a positive integral cost ci(u) for each uV(D) and iV(H). The cost of a homomorphism f of D to H is . For a fixed digraph H, the minimum cost homomorphism problem for H is stated as follows: for an input digraph D and costs ci(u) for each uV(D) and iV(H), verify whether there is a homomorphism of D to H and, if one exists, find such a homomorphism of minimum cost.We obtain dichotomy classifications of the computational complexity of the list homomorphism and minimum cost homomorphism problems, when H is a semicomplete digraph (digraph in which there is at least one arc between any two vertices). Our dichotomy for the list homomorphism problem coincides with the one obtained by Bang-Jensen, Hell and MacGillivray in 1988 for the homomorphism problem when H is a semicomplete digraph: both problems are polynomial solvable if H has at most one cycle; otherwise, both problems are NP-complete. The dichotomy for the minimum cost homomorphism problem is different: the problem is polynomial time solvable if H is acyclic or H is a cycle of length 2 or 3; otherwise, the problem is NP-hard.  相似文献   

15.
For a poset P=(X,≤), the upper bound graph (UB-graph) of P is the graph U=(X,EU), where uvEU if and only if uv and there exists mX such that u,vm. For a graph G, the distance two graph DS2(G) is the graph with vertex set V(DS2(G))=V(G) and u,vV(DS2(G)) are adjacent if and only if dG(u,v)=2. In this paper, we deal with distance two graphs of upper bound graphs. We obtain a characterization of distance two graphs of split upper bound graphs.  相似文献   

16.
We call the digraph D an orientation of a graph G if D is obtained from G by the orientation of each edge of G in exactly one of the two possible directions. The digraph D is an m-coloured digraph if the arcs of D are coloured with m-colours.Let D be an m-coloured digraph. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions: (i) for every pair of different vertices u,vN there is no monochromatic directed path between them and (ii) for every vertex xV(D)-N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we obtain sufficient conditions for an m-coloured orientation of a graph obtained from Kn by deletion of the arcs of K1,r(0?r?n-1) to have a kernel by monochromatic.  相似文献   

17.
Coefficients of ergodicity and the scrambling index   总被引:1,自引:0,他引:1  
For a primitive stochastic matrix S, upper bounds on the second largest modulus of an eigenvalue of S are very important, because they determine the asymptotic rate of convergence of the sequence of powers of the corresponding matrix. In this paper, we introduce the definition of the scrambling index for a primitive digraph. The scrambling index of a primitive digraph D is the smallest positive integer k such that for every pair of vertices u and v, there is a vertex w such that we can get to w from u and v in D by directed walks of length k; it is denoted by k(D). We investigate the scrambling index for primitive digraphs, and give an upper bound on the scrambling index of a primitive digraph in terms of the order and the girth of the digraph. By doing so we provide an attainable upper bound on the second largest modulus of eigenvalues of a primitive matrix that make use of the scrambling index.  相似文献   

18.
For two vertices u and v in a strong digraph D, the strong distance sd(u,v) between u and v is the minimum size (the number of arcs) of a strong sub-digraph of D containing u and v. For a vertex v of D, the strong eccentricity se(v) is the strong distance between v and a vertex farthest from v. The strong radius srad(D) (resp. strong diameter sdiam(D)) is the minimum (resp. maximum) strong eccentricity among the vertices of D. The lower (resp. upper) orientable strong radius srad(G) (resp. SRAD(G)) of a graph G is the minimum (resp. maximum) strong radius over all strong orientations of G. The lower (resp. upper) orientable strong diameter sdiam(G) (resp. SDIAM(G)) of a graph G is the minimum (resp. maximum) strong diameter over all strong orientations of G. In this paper, we determine the lower orientable strong radius and diameter of complete k-partite graphs, and give the upper orientable strong diameter and the bounds on the upper orientable strong radius of complete k-partite graphs. We also find an error about the lower orientable strong diameter of complete bipartite graph Km,n given in [Y.-L. Lai, F.-H. Chiang, C.-H. Lin, T.-C. Yu, Strong distance of complete bipartite graphs, The 19th Workshop on Combinatorial Mathematics and Computation Theory, 2002, pp. 12-16], and give a rigorous proof of a revised conclusion about sdiam(Km,n).  相似文献   

19.
An outpath of a vertex v in a digraph is a path starting at v such that v dominates the end vertex of the path only if the end vertex also dominates v.First we show that letting D be a strongly connected semicomplete c-partite digraph (c≥3)1 and one of the partite sets of it consists of a single vertex, say v, then D has a c-pancyclic partial ordering from v, which generalizes a result about pancyclicity of multipartite tournaments obtained by Gutin in 1993.Then we prove that letting D be a strongly connected semicomplete c-partite digraph with c≥3 and letting v be a vertex of D,then Dhas a(c-1)-pan-outpath partly ordering from v.This result improves a theorem about outpaths in semicomplete multipartite digraphs obtained by Guo in 1999.  相似文献   

20.
G. Gutin  A. Yeo 《Discrete Mathematics》2006,306(24):3315-3320
A set SV is called a q+-set (q--set, respectively) if S has at least two vertices and, for every uS, there exists vS,vu such that N+(u)∩N+(v)≠∅ (N-(u)∩N-(v)≠∅, respectively). A digraph D is called s-quadrangular if, for every q+-set S, we have |∪{N+(u)∩N+(v):uv,u,vS}|?|S| and, for every q--set S, we have |∪{N-(u)∩N-(v):u,vS)}?|S|. We conjecture that every strong s-quadrangular digraph has a Hamilton cycle and provide some support for this conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号