首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the enzymatic hydrolytic efficiency and reduce the supplementation of enzymes, the mixture designed experimental approach was used to optimize the composition of enzyme mixture and promote the hydrolysis of ball-milled corn stover. From the experimental results, a synergistic effect was found when combinations of the three enzymes, two kinds of cellulases and a kind of xylanase, were used. The optimal hydrolysis of pretreated corn stover accorded with enzymes activity ration of FPU/CMCase/β-glucosidase/xylanase = 4.4:1:75:829, and the hydrolysis efficiency of corn stover increased significantly compared with using individual enzyme. The results indicated that the mixture design experiment could be an effective tool for optimized enzyme mixture for lignocellulose hydrolysis.  相似文献   

2.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

3.
Effect of cationic surfactants alkyltrimethylammonium bromide (CnTAB) with varied alkyl chain lengths on the enzymatic hydrolysis of Avicel and the surface charge of cellulase was investigated. Enzymatic hydrolysis of Avicel increased linearly from 42.1 to 61.4 % with the increase of the concentration of cetyltrimethylammonium bromide (C16TAB) logarithmically from 0.0001 to 0.01 mM, and reached a maximum value at the concentration of 0.01–0.03 mM. When the concentration was increased further, the cellulase solution became positively charged and the enzymatic hydrolysis of Avicel decreased rapidly. With the increasing alkyl chain length, CnTAB provided more proton and neutralized the negative charge of cellulase more obviously. Therefore, the required concentration of CnTAB could be less to enhance the enzymatic hydrolysis of Avicel. In addition, C16TAB could enhance enzymatic hydrolysis efficiency of corncob at high solid content from 35.0 to 56.3 %; C16TAB could reduce about 60 % of the cellulase loading in the enzymatic hydrolysis of corncob to obtain the same glucose yield. Effect of C16TAB on the enzymatic hydrolysis of typical pretreated softwood and hardwood was also investigated. This study laid the foundation for using CnTAB to recover cellulase, and provided the design direction for cellulase with higher activity and better stability by adjusting its hydrophilicity and chargeability.  相似文献   

4.
Extrusion processing has shown potential to be used as a pretreatment method for second-generation bioethanol production. Furthermore, surfactants have been shown to reduce enzyme deactivation and increase the efficiency of hydrolysis. Therefore, a sequential pretreatment technique was developed for corn stover (CS) and prairie cordgrass (PCG) in which a single screw extruder was used for the first pretreatment according to a previously optimized condition using 70?C180?°C for feed, barrel, and die zones with 65?C155?rpm screw speed. The second pretreatment was optimized in this study at 45?C55?°C, 1?C4?h, 0.15?C0.6?g Tween 20/g glucan according to response surface methodology. Optimization of surfactant pretreatment facilitated the estimation of interaction and higher-order effects for major factors involved in surfactant treatment (temperature, time, surfactant loading). Using 8.6?FPU/g glucan cellulase, the optimum conditions found by fitting appropriate quadratic models to the data increased glucose and xylose yield by 27.5 and 33?% for CS and by 21.5 and 27?% for PCG, respectively. Tween 20 concentrations and pretreatment temperature were the most significant factors affecting sugar yield (p value <0.05). Studies of SDS concentration at and beyond critical micelle concentration (5.2?C100?mM) demonstrated a decrease in sugar yield compared to control.  相似文献   

5.
Since cellulose accessibility has become more recognized as the major substrate characteristic limiting hydrolysis rates and glucan digestibilities, cellulose solvent-based lignocellulose pretreatments have gained attention. In this study, we employed cellulose solvent- and organic solvent-based lignocellulose fractionation using two cellulose solvents: concentrated phosphoric acid [~85?% (w/w) H3PO4] and an ionic liquid Butyl-3-methylimidazolium chloride ([BMIM]Cl). Enzymatic glucan digestibilities of concentrated phosphoric acid- and [BMIM]Cl-pretreated corn stover were 96 and 55?% after 72?h at five filter paper units of cellulase per gram of glucan, respectively. Regenerated amorphous cellulose by concentrated phosphoric acid and [BMIM]Cl had digestibilities of 100 and 92?%, respectively. Our results suggested that differences in enzymatic glucan digestibilities of concentrated phosphoric acid- and [BMIM]Cl-pretreated corn stover were attributed to combinatory factors. These results provide insights into mechanisms of cellulose solvent-based pretreatment and effects of residual cellulose solvents and lignin on enzymatic cellulose hydrolysis.  相似文献   

6.
Steam-exploded corn stover biomass was used as the substrate for fed-batch separate enzymatic hydrolysis and fermentation (SHF) to investigate the solid concentration ranging from 10% to 30% (w/w) on the lignocellulose enzymatic hydrolysis and fermentation. The treatment of washing the steam-exploded material was also evaluated by experiments. The results showed that cellulose conversion changed little with increasing solid concentration, and fermentation by Saccharomyces cerevisiae revealed a nearly same ethanol yield with the water-washed steam-exploded corn stover. For the washed material at 30% substrate concentration, i.e., 30% water insoluble solids (WIS), enzymatic hydrolysis yielded 103.3 g/l glucose solution and a cellulose conversion of 72.5%, thus a high ethanol level up to 49.5 g/l. With the unwashed steam-exploded corn stover, though a cellulose conversion of 70.9% was obtained in hydrolysis at 30% solid concentration (27.9% WIS), its hydrolysate did not ferment at all, and the hydrolysate of 20% solid loading containing 3.3 g/l acetic acid and 145 mg/l furfural already exerted a strong inhibition on the fermentation and ethanol production.  相似文献   

7.
The aggregation behavior of catanionics formed by the mixture of cationic geminis derived from dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecylsulfate (SDS) was studied by means of phase studies and comprehensive small-angle neutron scattering (SANS) experiments at 25 °C and 50 mM overall concentration. The results are compared to those for the previously studied SDS + DTAC system. Various gemini spacers of different natures and geometries were used, but all of them had similar lengths: an ethoxy bridge, a double bond, and an aromatic ring binding the two DTACs in three different substitutions (ortho, meta, and para). SANS and SAXS data analysis indicates that the spacer has no large effect on the spheroidal micelles of pure surfactants formed at low concentration in water; however, specific effects appear with the addition of electrolytes. Microstructures formed in the catanionic mixtures are rather strongly dependent on the nature of the spacer. The most important finding is that for the hydrophilic, flexible ethoxy bridge, monodisperse vesicles with a fixed anionic/cationic charge ratio (depending only on the surfactant in excess) are formed. Furthermore, the composition of these vesicles shows that strongly charged aggregates are formed. This study therefore provides new opportunities for developing tailor-made gemini surfactants that allow for the fine tuning of catanionic structures.  相似文献   

8.
Addition of additives has been confirmed to increase cellulase performance in the hydrolysis of lignocellulosic materials. In the hydrolysis of xylan-containing lignocellulosic biomass, xylanase can synergistically enhance the performance of cellulase. However, the role of additives in xylan hydrolysis by xylanase is not yet clear. In this work, with the presence of additives (bovine serum albumin, poly(ethylene glycol), and Tween), the hydrolysis of isolated xylan and the xylan in corn stover increased to different extents. Additives increased free xylanase in supernatants in the hydrolysis with xylanase, indicating the reduction of the adsorption of xylanase on corn stover and insoluble xylan. Enhanced hydrolysis of Avicel and corn stover by additives suggested that besides the prevention of unproductive binding of xylanase to lignin by additives, reducing the adsorption of xylanase on substrates was also contributed to enzymatic hydrolysis. The increment of xylanase activity by additives suggests that the additives were activators of xylanase. The results of this work indicate that the supplementation of additives could improve xylanase performance, synergistically enhanced the cellulose hydrolysis, and beneficial for the recycling of xylanase.  相似文献   

9.
Synthetic vesicles are formed by cationic and anionic surfactants, didodecyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS). The morphology, size, and aqueous properties of cationic/anionic mixtures are investigated at various molar ratios between cationic and anionic surfactants. The charged vesicular dispersions made of DDAB/SDS are contacted or mixed with negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on DDAB/SDS molar ratio or PSSAMA/vesicle charge ratio, complexes flocculation or precipitation occur. Characterization of the cationic/anionic vesicles or complexes formed by the catanionic vesicles and polyelectrolytes is performed by transmission electron microscope (TEM), dynamic light scattering (DLS), conductivity, turbidity, and zeta potential measurements. The size, stability, and the surface charge on the mixed cationic/anionic vesicles or complexes are determined.  相似文献   

10.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   

11.
Three pretreated corn stover (ammonia fiber expansion, dilute acid, and dilute alkali) were used as carbon source to culture Trichoderma reesei Rut C-30 for cellulase and xylanase production. The results indicated that the cultures on ammonia fiber expansion and alkali pretreated corn stover had better enzyme production than the acid pretreated ones. The consequent enzymatic hydrolysis was performed applying fungal enzymes on pretreated corn stover samples. Tukey’s statistical comparisons exhibited that there were significant differences on enzymatic hydrolysis among different combination of fungal enzymes and pretreated corn stover. The higher sugar yields were achieved by the enzymatic hydrolysis of dilute alkali pretreated corn stover.  相似文献   

12.
Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer. By means of differential scanning calorimetry and wide-angle X-ray diffraction, the crystallinity and orientation changes in the PLLA and PCL fibers during the enzymatic degradation were investigated, respectively.  相似文献   

13.
A novel method of producing food-grade xylooligosaccharides from corn stover and corn cobs was investigated. The process starts with pretreatment of feedstock in aqueous ammonia, which results delignified and xylan-rich substrate. The pretreated substrates are subjected to enzymatic hydrolysis of xylan using endoxylanase for production of xylooligosaccharides. The conventional enzyme-based method involves extraction of xylan with a strong alkaline solution to form a liquid intermediate containing soluble xylan. This intermediate is heavily contaminated with various extraneous components. A costly purification step is therefore required before enzymatic hydrolysis. In the present method, xylan is obtained in solid form after pretreatment. Water-washing is all that is required for enzymatic hydrolysis of this material. The complex step of purifying soluble xylan from contaminant is essentially eliminated. Refining of xylooligosaccharides to food-grade is accomplished by charcoal adsorption followed by ethanol elution. Xylanlytic hydrolysis of the pretreated corn stover yielded glucan-rich residue that is easily digestible by cellulase enzyme. The digestibility of the residue reached 86% with enzyme loading of 10 filter paper units/g-glucan. As a feedstock for xylooligosaccharides production, corn cobs are superior to corn stover because of high xylan content and high packing density. The high packing density of corn cobs reduces water input and eventually raises the product concentration.  相似文献   

14.
两性离子甜菜碱表面活性剂(SB3-12)胶束具有较好的生物相容性,由于相反电荷的极性头之间具有静电中和作用,胶束表面具有小的负电荷密度。当加入阴离子的十二烷基硫酸钠(SDS)以后,负离子SD-与SB3-12胶束极性区内层季铵正电荷的静电中和作用,能连续地调节胶束表面磺酸基的负电荷密度,这有利于对药物分子的选择性增溶和调节在生理条件下的药物的输送。等温滴定量热(ITC)研究发现SB3-12和SDS有强的协同效应,混合临界胶束浓度(CMC)和胶束化焓明显降低,并得到两者协同效应的弱静电作用机理。当模型药物分子芦丁(Rutin)与SB3-12/SDS混合胶束作用时,芦丁7位羟基的氢解离后的阴离子与SDS共同作用于SB3-12形成混合胶束。UV-Vis吸收光谱和~1H NMR谱研究发现,在SB3-12胶束中,芦丁分子的A环位于季铵阳离子附近,B环位于两个相反电荷之间的弱极性区域。在SDS胶束中,B环位于栅栏层,而A环和二糖暴露于水相侧。在混合胶束中,随着SDS摩尔分数增加,对A环的静电吸引变弱。离子表面活性剂对两性离子表面活性剂胶束表面电荷密度的调节作用,本质上是对胶束极性区域的物理及化学性质的微调,进而实现对药物的可控增溶。  相似文献   

15.
木质纤维素酶解糖化*   总被引:4,自引:0,他引:4  
张名佳  苏荣欣  齐崴  何志敏 《化学进展》2009,21(5):1070-1074
纤维素水解转化为可发酵糖工艺是纤维素乙醇炼制过程中至关重要的环节。酶法水解工艺具有条件温和、副产物少、环境友好等特点,因而受到广泛重视。目前许多学者已针对如何提高木质纤维素酶解效率、降低纤维素酶成本等问题,开展了多种化学、生物技术及工艺耦合的研究。本文综述了近几年木质纤维素酶解领域取得的最新工艺进展和理论研究成果,对原料预处理、多酶复配优化、酶脱附与重复利用、工艺耦合、高固液比反应等方面的研究情况进行了总结,同时展望了木质纤维素酶解工艺的未来发展方向。  相似文献   

16.
Model-based fed-batch for high-solids enzymatic cellulose hydrolysis   总被引:1,自引:0,他引:1  
While many kinetic models have been developed for the enzymatic hydrolysis of cellulose, few have been extensively applied for process design, optimization, or control. High-solids operation of the enzymatic hydrolysis of lignocellulose is motivated by both its operation decreasing capital costs and increasing product concentration and hence separation costs. This work utilizes both insights obtained from experimental work and kinetic modeling to develop an optimization strategy for cellulose saccharification at insoluble solids levels greater than 15% (w/w), where mixing in stirred tank reactors (STRs) becomes problematic. A previously developed model for batch enzymatic hydrolysis of cellulose was modified to consider the effects of feeding in the context of fed-batch operation. By solving the set of model differential equations, a feeding profile was developed to maintain the insoluble solids concentration at a constant or manageable level throughout the course of the reaction. Using this approach, a stream of relatively concentrated solids (and cellulase enzymes) can be used to increase the final sugar concentration within the reactor without requiring the high initial levels of insoluble solids that would be required if the operation were performed in batch mode. Experimental application in bench-scale STRs using a feed stream of dilute acid-pretreated corn stover solids and cellulase enzymes resulted in similar cellulose conversion profiles to those achieved in batch shake-flask reactors where temperature control issues are mitigated. Final cellulose conversions reached approximately 80% of theoretical for fed-batch STRs fed to reach a cumulative solids level of 25% (w/w) initial insoluble solids.  相似文献   

17.
表面活性剂与有机小分子作用不仅能提高表面活性剂的聚集能力,还能提高小分子的溶解度、稳定性等应用性能,因此研究二者之间的相互作用机理对于促进表面活性剂的发展和实际应用具有重要意义。本工作提出了一种利用功能有机小分子调控表面活性剂聚集行为,进而提高不稳定小分子自身稳定性的新策略。利用表面张力、紫外可见吸收光谱、荧光光谱、动态光散射、等温滴定量热和核磁共振技术研究了在p H为7.0时,叶酸分别与十二烷基硫酸钠(SDS)、十二烷基三甲基溴化铵(DTAB)、季铵盐Gemini 12-6-12和季铵盐线性三聚12-3-12-3-12四种表面活性剂之间的相互作用及其导致的叶酸光氧化降解性能的变化,结果表明,阴离子表面活性剂SDS抑制叶酸光氧化降解的效率较低,而阳离子表面活性剂都能够显著抑制叶酸的光氧化降解,且随着表面活性剂寡聚度的增加,抑制效果增强,所需表面活性剂的浓度显著降低,寡聚表面活性剂12-3-12-3-12的抑制效率高达96%。  相似文献   

18.
Nonionic surfactants have been utilized to improve the enzymatic hydrolysis of lignocellulosic materials. However, the role of surfactant adsorption affecting enzymatic hydrolysis has not been elaborated well. In this work, nonionic surfactants differing in their molecular structures, namely the polyoxyethylene sorbitan monooleate (Tween 80), the secondary alcohol ethoxylate (Tergitol 15-S-9), and the branched alcohol ethoxylate (Tergitol TMN-6), were studied for their effects on the enzymatic hydrolysis of palm fruit bunch (PFB). The PFB was pretreated with a 10% w/v sodium hydroxide solution and then hydrolyzed using the cellulase enzyme from Trichoderma reesei (ATCC 26921) at 50 °C and pH 5. The optimal conditions providing similar yields of reducing sugar required Tween 80 and Tergitol TMN-6 at 0.25% w/v, while Tergitol 15-S-9 was required at 0.1% w/v. All the surfactants improved the enzymatic conversion efficiency and reduced unproductive binding of the enzyme to lignin. In addition, the adsorption isotherm of cellulase was fit well by the Freundlich isotherm, while adsorption of the three nonionic surfactants agreed well with the Langmuir isotherm. Adsorption capacities of the three nonionic surfactants were consistent with their enhancement efficiencies in hydrolysis. The critical micelle concentration was observed as a key property of nonionic surfactant for adsorption capacity.  相似文献   

19.
In this paper we present the first results of enzymatic activities in a reverse microemulsion medium based on a mixture of an anionic and a cationic surfactant, called catanionic microemulsion. The studied system is composed of sodium dodecyl sulfate (SDS)/dodecyltrimethylammonium bromide (DTAB)/n-hexanol/citrate buffer/n-dodecane, with high SDS/(SDS + DTAB) weight fractions. It turns out that the results are similar to those obtained in classical reverse microemulsions, except that the presence of DTAB exerts an inhibiting effect on the enzyme. Nevertheless, enzymatic superactivities are found even at a DTAB to total surfactant ratio of 15%, corresponding to 3% weight fraction of cationic surfactant in the microemulsion. The influence of pH and hexanol content on the enzymatic activities is also studied.  相似文献   

20.
The combined effect of salt (10 mmol L(-1)) and surfactants on the sorption of the fluorescent brightener 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers was studied. Sorption efficiencies with both cationic and anionic surfactants were evaluated. Emission spectroscopy was used for quantitative analysis since Tinopal has an intense fluorescence. The sorption efficiency of the brightener is greater for solutions containing a cationic surfactant (DTAC) below the critical micelle concentration (cmc), while for an anionic surfactant (SDS) above its cmc the efficiency is greater. The profile of the sorption isotherms were interpreted in terms of the evolution of surfactant aggregation at the fiber/solution interface. Salt influences the efficiency of the Tinopal sorption on the modified cellulose fibers either because it decreases the cmc of the surfactants or because the ions screen the surface charges of the fiber which decreases the electrostatic interaction among the charged headgroup of the surfactant and the charged fiber surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号