首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A submodule N of a module M is idempotent if N = Hom(M, N)N. The module M is fully idempotent if every submodule of M is idempotent. We prove that over a commutative ring, cyclic idempotent submodules of any module are direct summands. Counterexamples are given to show that this result is not true in general. It is shown that over commutative Noetherian rings, the fully idempotent modules are precisely the semisimple modules. We also show that the commutative rings over which every module is fully idempotent are exactly the semisimple rings. Idempotent submodules of free modules are characterized.  相似文献   

2.
We define and investigate t-semisimple modules as a generalization of semisimple modules. A module M is called t-semisimple if every submodule N contains a direct summand K of M such that K is t-essential in N. T-semisimple modules are Morita invariant and they form a strict subclass of t-extending modules. Many equivalent conditions for a module M to be t-semisimple are found. Accordingly, M is t-semisiple, if and only if, M = Z 2(M) ⊕ S(M) (where Z 2(M) is the Goldie torsion submodule and S(M) is the sum of nonsingular simple submodules). A ring R is called right t-semisimple if R R is t-semisimple. Various characterizations of right t-semisimple rings are given. For some types of rings, conditions equivalent to being t-semisimple are found, and this property is investigated in terms of chain conditions.  相似文献   

3.
Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). Let F be a fully invariant submodule of M and I?1(F) denotes the set {mM:Im?F} for any subset I of S. The module M is called F-Baer if I?1(F) is a direct summand of M for every left ideal I of S. This work is devoted to the investigation of properties of F-Baer modules. We use F-Baer modules to decompose a module into two parts consists of a Baer module and a module determined by fully invariant submodule F, namely, for a module M, we show that M is F-Baer if and only if M = FN where N is a Baer module. By using F-Baer modules, we obtain some new results for Baer rings.  相似文献   

4.
《代数通讯》2013,41(11):4285-4301
Abstract

Let M be a left R-module and F a submodule of M for any ring R. We call M F-semiregular if for every x ∈ M, there exists a decomposition M = A ⊕ B such that A is projective, A ≤ Rx and Rx ∩ B ≤ F. This definition extends several notions in the literature. We investigate some equivalent conditions to F-semiregular modules and consider some certain fully invariant submodules such as Z(M), Soc(M), δ(M). We prove, among others, that if M is a finitely generated projective module, then M is quasi-injective if and only if M is Z(M)-semiregular and M ⊕ M is CS. If M is projective Soc(M)-semiregular module, then M is semiregular. We also characterize QF-rings R with J(R)2 = 0.  相似文献   

5.
Torsion-free Abelian groups G and H are called quasi-equal (GH) if λGHG for a certain natural number ≈. It is known (see [3]) that the quasi-equality of torsion-free Abelian groups can be represented as the equality in an appropriate factor category. Thus while dealing with certain group properties it is usual to prove that the property under consideration is preserved under the transition to a quasi-equal group. This trick is especially frequently used when the author investigates module properties of Abelian groups; here a group is considered as a left module over its endomorphism ring. On the other hand, a topical problem in the Abelian group theory is the problem of investigation of pureness in the category of Abelian groups (see [4]). We consider the pureness introduced by P. Cohn [2] for Abelian groups as modules over their endomorphism rings. Particularity of the investigation of the properties of pureness for the Abelian group G as the module E (G)G lies in the fact that this is a more general situation than the investigation of pureness for a unitary module over an arbitrary ring R with the identity element. Indeed, if R M is an arbitrary unitary left module and M + is its Abelian group, then each element from R can be identified with an appropriate endomorphism from the ring E(M +) under the canonical ring homomorphism RE(M +). Then it holds that if E(M+) N is a pure submodule in E(M+) M +, then R N is a pure submodule in R M. In the present paper the interrelations between pureness, servantness, and quasi-decompositions for Abelian torsion-free groups of finite rank will be investigated. __________ Translated from Fundamentalnaya i Prikladnaya Matematika (Fundamental and Applied Mathematics), Vol. 10, No. 2, pp. 225–238, 2004.  相似文献   

6.
Sh. Asgari  M. R. Vedadi 《代数通讯》2013,41(5):1801-1816
We carry out an extensive study of modules M R with the property that M/f(M) is singular for all injective endomorphisms f of M. Such modules called “quasi co-Hopfian”, generalize co-Hopfian modules. It is shown that a ring R is semisimple if and only if every quasi co-Hopfian R-module is co-Hopfian. Every module contains a unique largest fully invariant quasi co-Hopfian submodule. This submodule is determined for some modules including the semisimple ones. Over right nonsingular rings several equivalent conditions to being quasi co-Hopfian are given. Modules with all submodules quasi co-Hopfian are called “completely quasi co-Hopfian” (cqcH). Over right nonsingular rings and over certain right Noetherian rings, it is proved that every finite reduced rank module is cqcH. For a right nonsingular ring which is right semi-Artinian (resp. right FBN) the class of cqcH modules is the same as the class of finite reduced rank modules if and only if there are only finitely many isomorphism classes of nonsingular R-modules which are simple (resp. indecomposable injective).  相似文献   

7.
Yiqiang Zhou 《代数通讯》2013,41(2):687-698
A module M R is defined to be strongly compressible (or SC for short) if for every essential submodule N of M, there exists X ? E(M) such that M ? X ? N. We show that a ring R is semiprime right Goldie iff R Ris SC module iff every right ideal of R is SC module iff every submodule of each progenerator of Mod-R is SC module. As corollaries of this result, we obtain some new module-theoretic characterizations of semiprime Goldie rings, prime (right) Goldie rings and Prüfer rings, etc., etc.,respectively. And the characterization theorem of semiprime Goldie rings of López-Permouth, Rizvi and Yousif by using weakly-injective modules can be regarded as a corollary of our results.  相似文献   

8.
It is well known that the Rickart property of rings is not a left-right symmetric property. We extend the notion of the left Rickart property of rings to a general module theoretic setting and define 𝔏-Rickart modules. We study this notion for a right R-module M R where R is any ring and obtain its basic properties. While it is known that the endomorphism ring of a Rickart module is a right Rickart ring, we show that the endomorphism ring of an 𝔏-Rickart module is not a left Rickart ring in general. If M R is a finitely generated 𝔏-Rickart module, we prove that End R (M) is a left Rickart ring. We prove that an 𝔏-Rickart module with no set of infinitely many nonzero orthogonal idempotents in its endomorphism ring is a Baer module. 𝔏-Rickart modules are shown to satisfy a certain kind of nonsingularity which we term “endo-nonsingularity.” Among other results, we prove that M is endo-nonsingular and End R (M) is a left extending ring iff M is a Baer module and End R (M) is left cononsingular.  相似文献   

9.
Majid M. Ali 《代数通讯》2013,41(12):4479-4501
All rings are commutative with identity and all modules are unital. Anderson proved that a submodule N of an R-module M is multiplication (resp. join principal) if and only if 0(+) N is a multiplication (resp. join principal) ideal or R(M). The idealization of M. In this article we develop more fully the tool of idealization of a module, particularly in the context of multiplication modules, generalizing Anderson's theorems and discussing the behavior under idealization of some ideals and some submodules associated with a module.  相似文献   

10.
Weakly regular modules over normal rings   总被引:1,自引:1,他引:0  
Under study are some conditions for the weakly regular modules to be closed under direct sums and the rings over which all modules are weakly regular. For an arbitrary right R-module M, we prove that every module in the category σ(M) is weakly regular if and only if each module in σ(M) is either semisimple or contains a nonzero M-injective submodule. We describe the normal rings over which all modules are weakly regular.  相似文献   

11.
A right module M over a ring R is said to be retractable if Hom R (M, N) ≠ 0 for each nonzero submodule N of M. We show that M ? R RG is a retractable RG-module if and only if M R is retractable for every finite group G. The ring R is (finitely) mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.  相似文献   

12.
Chin-Pi Lu 《代数通讯》2013,41(3):807-828
Let M be a module over a commutative ring R. A submodule P of M is called prime if P ≠ M and, whenever r ∈ R, e ∈ M, and re ∈ P, we have rM ? P or e ∈ P. We let Spec(M) denote the set of all prime submodules of M. Using a topology analogous to the Zariski topology for Spec(R), we establish necessary and sufficient conditions for Spec(M) to be a Noetherian space. We produce some examples of modules with Noetherian spectrum that have not appeared in the literature previously. In particular, Laskerian modules and faithfully flat modules over Laskerian rings have Noetherian spectra. (The term Laskerian is defined in Section 3.)  相似文献   

13.
《代数通讯》2013,41(5):1945-1959
Abstract

Let R be a commutative ring. An R-module M is called a multiplication module if for each submodule N of M, N?=?IM for some ideal I of R. An R-module M is called a pm-module, i.e., M is pm, if every prime submodule of M is contained in a unique maximal submodule of M. In this paper the following results are obtained. (1) If R is pm, then any multiplication R-module M is pm. (2) If M is finitely generated, then M is a multiplication module if and only if Spec(M) is a spectral space if and only if Spec(M)?=?{PM?|?P?∈?Spec(R) and P???M }. (3) If M is a finitely generated multiplication R-module, then: (i) M is pm if and only if Max(M) is a retract of Spec(M) if and only if Spec(M) is normal if and only if M is a weakly Gelfand module; (ii) M is a Gelfand module if and only if Mod(M) is normal. (4) If M is a multiplication R-module, then Spec(M) is normal if and only if Mod(M) is weakly normal.  相似文献   

14.
The well-known Schur's Lemma states that the endomorphism ring of a simple module is a division ring. But the converse is not true in general. In this paper we study modules whose endomorphism rings are division rings. We first reduce our consideration to the case of faithful modules with this property. Using the existence of such modules, we obtain results on a new notion which generalizes that of primitive rings. When R is a full or triangular matrix ring over a commutative ring, a structure theorem is proved for an R-module M such that End R (M) is a division ring. A number of examples are given to illustrate our results and to motivate further study on this topic.  相似文献   

15.
We study the structure of rings over which every right module is an essential extension of a semisimple module by an injective one. A ring R is called a right max-ring if every nonzero right R-module has a maximal submodule. We describe normal regular semiartinian rings whose endomorphism ring of the minimal injective cogenerator is a max-ring.  相似文献   

16.
《代数通讯》2013,41(4):1833-1852
ABSTRACT

A module M is called (strongly) FI-extending if every fully invariant submodule is essential in a (fully invariant) direct summand. The class of strongly FI-extending modules is properly contained in the class of FI-extending modules and includes all nonsingular FI-extending (hence nonsingular extending) modules and all semiprime FI-exten ding rings. In this paper we examine the behavior of the class of strongly FI-extending modules with respect to the preservation of this property in submodules, direct summands, direct sums, and endomorphism rings.  相似文献   

17.
Let R be a ring. A module MR is said to be GC2 if for any N≤ M with N? M, N is a direct summand of M. In this article, we give some characterizations and properties of GC2 modules and their endomorphism rings, and many results on C 2 modules and GC2 rings are generalized to GC2 modules.  相似文献   

18.
Let M be a left R-module. In this paper a generalization of the notion of m-system set of rings to modules is given. Then for a submodule N of M, we define := { m ε M: every m-system containing m meets N}. It is shown that is the intersection of all prime submodules of M containing N. We define rad R (M) = . This is called Baer-McCoy radical or prime radical of M. It is shown that if M is an Artinian module over a PI-ring (or an FBN-ring) R, then M/rad R (M) is a Noetherian R-module. Also, if M is a Noetherian module over a PI-ring (or an FBN-ring) R such that every prime submodule of M is virtually maximal, then M/rad R (M) is an Artinian R-module. This yields if M is an Artinian module over a PI-ring R, then either rad R (M) = M or rad R (M) = ∩ i=1 n for some maximal ideals of R. Also, Baer’s lower nilradical of M [denoted by Nil* ( R M)] is defined to be the set of all strongly nilpotent elements of M. It is shown that, for any projective R-module M, rad R (M) = Nil*( R M) and, for any module M over a left Artinian ring R, rad R (M) = Nil*( R M) = Rad(M) = Jac(R)M. This research was in part supported by a grant from IPM (No. 85130016). Also this work was partially supported by IUT (CEAMA). The author would like to thank the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.  相似文献   

19.
韩仑  陈淼森 《数学研究》2009,42(2):154-159
对于环R.一个右R模被叫做主伪内射模。若每一个从M的主子模到M的单同态可以扩张为M的自同态.主伪内射是主拟内射的推广.在本文中,我们给出了一些主伪内射的性质并讨论什么情况下主伪内射模是主拟内射模的问题.  相似文献   

20.
For a ring R and a right R-module M, a submodule N of M is said to be δ-small in M if, whenever N+X=M with M/X singular, we have X=M. Let ℘ be the class of all singular simple modules. Then δ(M)=Σ{ LM| L is a δ-small submodule of M} = Re jm(℘)=∩{ NM: M/N∈℘. We call M δ-coatomic module whenever NM and M/N=δ(M/N) then M/N=0. And R is called right (left) δ-coatomic ring if the right (left) R-module R R(RR) is δ-coatomic. In this note, we study δ-coatomic modules and ring. We prove M=⊕ i=1 n Mi is δ-coatomic if and only if each M i (i=1,…, n) is δ-coatomic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号