首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Sh. Asgari  M. R. Vedadi 《代数通讯》2013,41(5):1801-1816
We carry out an extensive study of modules M R with the property that M/f(M) is singular for all injective endomorphisms f of M. Such modules called “quasi co-Hopfian”, generalize co-Hopfian modules. It is shown that a ring R is semisimple if and only if every quasi co-Hopfian R-module is co-Hopfian. Every module contains a unique largest fully invariant quasi co-Hopfian submodule. This submodule is determined for some modules including the semisimple ones. Over right nonsingular rings several equivalent conditions to being quasi co-Hopfian are given. Modules with all submodules quasi co-Hopfian are called “completely quasi co-Hopfian” (cqcH). Over right nonsingular rings and over certain right Noetherian rings, it is proved that every finite reduced rank module is cqcH. For a right nonsingular ring which is right semi-Artinian (resp. right FBN) the class of cqcH modules is the same as the class of finite reduced rank modules if and only if there are only finitely many isomorphism classes of nonsingular R-modules which are simple (resp. indecomposable injective).  相似文献   

2.
We define and investigate t-semisimple modules as a generalization of semisimple modules. A module M is called t-semisimple if every submodule N contains a direct summand K of M such that K is t-essential in N. T-semisimple modules are Morita invariant and they form a strict subclass of t-extending modules. Many equivalent conditions for a module M to be t-semisimple are found. Accordingly, M is t-semisiple, if and only if, M = Z 2(M) ⊕ S(M) (where Z 2(M) is the Goldie torsion submodule and S(M) is the sum of nonsingular simple submodules). A ring R is called right t-semisimple if R R is t-semisimple. Various characterizations of right t-semisimple rings are given. For some types of rings, conditions equivalent to being t-semisimple are found, and this property is investigated in terms of chain conditions.  相似文献   

3.
M. Ghirati 《代数通讯》2013,41(2):564-580
The submodules with the property of the title (N ? M is strongly essential in M if I N is essential in I M for any index set I) are introduced and fully investigated.

It is shown that for each submodule N of M there exists a subset T ? M such that N + T is strongly essential submodule of M and (N:T) = Ann(T), T  ∩  N = 0. Basic properties of these objects and several examples are given and the counterparts of the related concepts to essential submodules are also introduced and studied. It is shown that each maximal left ideal of a left fully bounded ring is either a summand or strongly essential. Rings over which no module has a proper strongly essential submodule are characterized. It is also shown that the left Loewy rings are the only rings over which the essential submodules and strongly essential submodules of any left module coincide. Finally, a new characterization of left FBN rings is observed.  相似文献   

4.
《代数通讯》2013,41(10):4073-4083
Abstract

It is shown that a module M has countable Noetherian dimension if and only if the lengths of ascending chains of submodules of M has a countable upper bound. This shows in particular that every submodule of a module with countable Noetherian dimension is countably generated. It is proved that modules with Noetherian dimension over locally Noetherian rings have countable Noetherian dimension. We also observe that ωω is a universal upper bound for the lengths of all chains in Artinian modules over commutative rings.  相似文献   

5.
Majid M. Ali 《代数通讯》2013,41(12):4479-4501
All rings are commutative with identity and all modules are unital. Anderson proved that a submodule N of an R-module M is multiplication (resp. join principal) if and only if 0(+) N is a multiplication (resp. join principal) ideal or R(M). The idealization of M. In this article we develop more fully the tool of idealization of a module, particularly in the context of multiplication modules, generalizing Anderson's theorems and discussing the behavior under idealization of some ideals and some submodules associated with a module.  相似文献   

6.
Summary Let M be a left R-module. Then a proper submodule P of M is called weakly prime submodule if for any ideals A and B of R and any submodule N of M such that ABN P, we have AN P or BN P. We define weakly prime radicals of modules and show that for Ore domains, the study of weakly prime radicals of general modules reduces to that of torsion modules. We determine the weakly prime radical of any module over a commutative domain R with dim (R) ≦ 1. Also, we show that over a commutative domain R with dim (R) ≦ 1, every semiprime submodule of any module is an intersection of weakly prime submodules. Localization of a module over a commutative ring preserves the weakly prime property. An R-module M is called semi-compatible if every weakly prime submodule of M is an intersection of prime submodules. Also, a ring R is called semi-compatible if every R-module is semi-compatible. It is shown that any projective module over a commutative ring is semi-compatible and that a commutative Noetherian ring R is semi-compatible if and only if for every prime ideal B of R, the ring R/\B is a Dedekind domain. Finally, we show that if R is a UFD such that the free R-module RR is a semi-compatible module, then R is a Bezout domain.  相似文献   

7.
A module M is said to be square free if whenever its submodule is isomorphic to N2 = NN for some module N, then N = 0. Dually, a module M is said to be d-square free (dual square free) if whenever its factor module is isomorphic to N2 for some module N, then N = 0. In this paper, we give some fundamental properties of d-square free modules and study rings whose d-square free modules are closed under submodules or essential extensions.  相似文献   

8.
A right module M over a ring R is said to be retractable if Hom R (M, N) ≠ 0 for each nonzero submodule N of M. We show that M ? R RG is a retractable RG-module if and only if M R is retractable for every finite group G. The ring R is (finitely) mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.  相似文献   

9.
We characterize right Noetherian rings over which all simple modules are almost injective. It is proved that R is such a ring, if and only if, the complements of semisimple submodules of every R-module M are direct summands of M, if and only if, R is a finite direct sum of right ideals Ir, where Ir is either a Noetherian V-module with zero socle, or a simple module, or an injective module of length 2. A commutative Noetherian ring for which all simple modules are almost injective is precisely a finite direct product of rings Ri, where Ri is either a field or a quasi-Frobenius ring of length 2. We show that for commutative rings whose all simple modules are almost injective, the properties of Kasch, (semi)perfect, semilocal, quasi-Frobenius, Artinian, and Noetherian coincide.  相似文献   

10.
A widely used result of Wedderburn and Artin states that “every left ideal of a ring R is a direct summand of R if and only if R has a unique decomposition as a finite direct product of matrix rings over division rings.” Motivated by this, we call a module M virtually semisimple if every submodule of M is isomorphic to a direct summand of M and M is called completely virtually semisimple if every submodule of M is virtually semisimple. We show that the left R-module R is completely virtually semisimple if and only if R has a unique decomposition as a finite direct product of matrix rings over principal left ideal domains. This shows that R is completely virtually semisimple on both sides if and only if every finitely generated (left and right) R-module is a direct sum of a singular module and a projective virtually semisimple module. The Wedderburn-Artin theorem follows as a corollary from our result.  相似文献   

11.
《代数通讯》2013,41(4):1833-1852
ABSTRACT

A module M is called (strongly) FI-extending if every fully invariant submodule is essential in a (fully invariant) direct summand. The class of strongly FI-extending modules is properly contained in the class of FI-extending modules and includes all nonsingular FI-extending (hence nonsingular extending) modules and all semiprime FI-exten ding rings. In this paper we examine the behavior of the class of strongly FI-extending modules with respect to the preservation of this property in submodules, direct summands, direct sums, and endomorphism rings.  相似文献   

12.
Weakly regular modules over normal rings   总被引:1,自引:1,他引:0  
Under study are some conditions for the weakly regular modules to be closed under direct sums and the rings over which all modules are weakly regular. For an arbitrary right R-module M, we prove that every module in the category σ(M) is weakly regular if and only if each module in σ(M) is either semisimple or contains a nonzero M-injective submodule. We describe the normal rings over which all modules are weakly regular.  相似文献   

13.
An R-module M is called a multiplication module if for each submodule N of M, N = IM for some ideal I of R. As defined for a commutative ring R, an R-module M is said to be reduced if the intersection of prime submodules of M is zero. The prime spectrum and minimal prime submodules of the reduced module M are studied. Essential submodules of M are characterized via a topological property. It is shown that the Goldie dimension of M is equal to the Souslin number of Spec(M)\mbox{\rm Spec}(M). Also a finitely generated module M is a Baer module if and only if Spec(M)\mbox{\rm Spec}(M) is an extremally disconnected space; if and only if it is a CS-module. It is proved that a prime submodule N is minimal in M if and only if for each x ∈ N, Ann(x) \not í (N:M).\mbox{\rm Ann}(x) \not \subseteq (N:M). When M is finitely generated; it is shown that every prime submodule of M is maximal if and only if M is a von Neumann regular module (VNM); i.e., every principal submodule of M is a summand submodule. Also if M is an injective R-module, then M is a VNM.  相似文献   

14.
Relative notions of flatness are introduced as a mean to gauge the extent of the flatness of any given module. Every module is thus endowed with a flatness domain and, for every ring, the collection of flatness domains of all of its modules is a lattice with respect to class inclusion. This lattice, the flatness profile of the ring, allows us, in particular, to focus on modules which have a smallest flatness domain (namely, one consisting of all regular modules.) We establish that such modules exist over arbitrary rings and we call them Rugged Modules. Rings all of whose (cyclic) modules are rugged are shown to be precisely the von Neumann regular rings. We consider rings without a flatness middle class (i.e., rings for which modules must be either flat or rugged.) We obtain that, over a right Noetherian ring every left module is rugged or flat if and only if every right module is poor or injective if and only if R = S×T, where S is semisimple Artinian and T is either Morita equivalent to a right PCI-domain, or T is right Artinian whose Jacobson radical properly contains no nonzero ideals. Character modules serve to bridge results about flatness and injectivity profiles; in particular, connections between rugged and poor modules are explored. If R is a ring whose regular left modules are semisimple, then a right module M is rugged if and only if its character left module M+ is poor. Rugged Abelian groups are fully characterized and shown to coincide precisely with injectively poor and projectively poor Abelian groups. Also, in order to get a feel for the class of rugged modules over an arbitrary ring, we consider the homological ubiquity of rugged modules in the category of all modules in terms of the feasibility of rugged precovers and covers for arbitrary modules.  相似文献   

15.
Chin-Pi Lu 《代数通讯》2013,41(3):807-828
Let M be a module over a commutative ring R. A submodule P of M is called prime if P ≠ M and, whenever r ∈ R, e ∈ M, and re ∈ P, we have rM ? P or e ∈ P. We let Spec(M) denote the set of all prime submodules of M. Using a topology analogous to the Zariski topology for Spec(R), we establish necessary and sufficient conditions for Spec(M) to be a Noetherian space. We produce some examples of modules with Noetherian spectrum that have not appeared in the literature previously. In particular, Laskerian modules and faithfully flat modules over Laskerian rings have Noetherian spectra. (The term Laskerian is defined in Section 3.)  相似文献   

16.
Let R be a ring with identity and let M be a unital left R-module. A proper submodule L of M is radical if L is an intersection of prime submodules of M. Moreover, a submodule L of M is isolated if, for each proper submodule N of L, there exists a prime submodule K of M such that N ? K but L ? K. It is proved that every proper submodule of M is radical (and hence every submodule of M is isolated) if and only if N ∩ IM = IN for every submodule N of M and every (left primitive) ideal I of R. In case, R/P is an Artinian ring for every left primitive ideal P of R it is proved that a finitely generated submodule N of a nonzero left R-module M is isolated if and only if PN = N ∩ PM for every left primitive ideal P of R. If R is a commutative ring, then a finitely generated submodule N of a projective R-module M is isolated if and only if N is a direct summand of M.  相似文献   

17.
Sh. Asgari 《代数通讯》2018,46(3):1277-1286
An interesting result, obtaining by some theorems of Asano, Köthe and Warfield, states that: “for a commutative ring R, every module is a direct sum of uniform modules if and only if R is an Artinian principal ideal ring.” Moreover, it is observed that: “every ideal of a commutative ring R is a direct sum of uniform modules if and only if R is a finite direct product of uniform rings.” These results raise a natural question: “What is the structure of commutative rings whose all proper ideals are direct sums of uniform modules?” The goal of this paper is to answer this question. We prove that for a commutative ring R, every proper ideal is a direct sum of uniform modules, if and only if, R is a finite direct product of uniform rings or R is a local ring with the unique maximal ideal ? of the form ? = US, where U is a uniform module and S is a semisimple module. Furthermore, we determine the structure of commutative rings R for which every proper ideal is a direct sum of cyclic uniform modules (resp., cocyclic modules). Examples which delineate the structures are provided.  相似文献   

18.
Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). Let F be a fully invariant submodule of M and I?1(F) denotes the set {mM:Im?F} for any subset I of S. The module M is called F-Baer if I?1(F) is a direct summand of M for every left ideal I of S. This work is devoted to the investigation of properties of F-Baer modules. We use F-Baer modules to decompose a module into two parts consists of a Baer module and a module determined by fully invariant submodule F, namely, for a module M, we show that M is F-Baer if and only if M = FN where N is a Baer module. By using F-Baer modules, we obtain some new results for Baer rings.  相似文献   

19.
《代数通讯》2013,41(6):2655-2673
Abstract

Let N be a submodule of a module M over a commutative ring R such that M/N is finitely generated. It is shown that a submodule of M is a prime submodule minimal over N if and only if it is the saturation of N + pM for certain prime ideal p of R. The bearing of this result upon the M-radical of N is discussed.  相似文献   

20.
An R-module M is called principally quasi-injective if each R-hornomorphism from a principal submodule of M to M can be extended to an endomorphism of M. Many properties of principally injective rings and quasi-injective modules are extended to these modules. As one application, we show that, for a finite-dimensional quasi-injective module M in which every maximal uniform submodule is fully invariant, there is a bijection between the set of indecomposable summands of M and the maximal left ideals of the endomorphism ring of M

Throughout this paper all rings R are associative with unity, and all modules are unital. We denote the Jacobson radical, the socle and the singular submodule of a module M by J(M), soc(M) and Z(M), respectively, and we write J(M) = J. The notation N ?ess M means that N is an essential submodule of M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号