首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
董成伟 《物理学报》2018,67(24):240501-240501
混沌系统的奇怪吸引子是由无数条周期轨道稠密覆盖构成的,周期轨道是非线性动力系统中除不动点之外最简单的不变集,它不仅能够体现出混沌运动的所有特征,而且和系统振荡的产生与变化密切相关,因此分析复杂系统的动力学行为时获取周期轨道具有重要意义.本文系统地研究了非扩散洛伦兹系统一定拓扑长度以内的周期轨道,提出一种基于轨道的拓扑结构来建立一维符号动力学的新方法,通过变分法数值计算轨道显得很稳定.寻找轨道初始化时,两条轨道片段能够被用作基本的组成单元,基于整条轨道的结构进行拓扑分类的方式显得很有效.此外,讨论了周期轨道随着参数变化时的形变情况,为研究轨道的周期演化规律提供了新途径.本研究可为在其他类似的混沌体系中找到并且系统分类周期轨道提供一种可借鉴的方法.  相似文献   

2.
We present a simple noncausal noise reduction algorithm for time series that consist of noisy measurements of the state vectors of a deterministic (chaotic) nonlinear system. The underlying dynamical system is assumed to be known and to operate in discrete time. The noise reduction algorithm is an iterative scheme for finding exact deterministic orbits close to the measured noisy orbits. Furthermore, we discuss cases where the solution is not the original orbit but homoclinic to it. (c) 2001 American Institute of Physics.  相似文献   

3.
Symbolic dynamics is applied to the one-dimensional three-body problem with equal masses. The sequence of binary collisions along an orbit is expressed as a symbol sequence of two symbols. Based on the time reversibility of the problem and numerical data, inadmissible (i.e., unrealizable) sequences of collisions are systematically found. A graph for the transitions among various regions in the Poincare section is constructed. This graph is used to find an infinite number of periodic sequences, which implies an infinity of periodic orbits other than those accompanying a simple periodic orbit called the Schubart orbit. Finally, under reasonable assumptions on inadmissible sequences, we prove that the set of admissible symbol sequences forms a Cantor set. (c) 2000 American Institute of Physics.  相似文献   

4.
In this Letter, a hyperchaotic Lorenz system is constructed via state feedback control. Abundant dynamics of the hyperchaotic system is studied using the Lyapunov exponents, Poincaré section and bifurcation diagram. Furthermore, effective linear feedback controllers are designed for stabilizing hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbit. Numerical simulations are given to illustrate and verify the results.  相似文献   

5.
We apply time-delayed feedback control to stabilise unstable periodic orbits of an amplitude-phase oscillator. The control acts on both, the amplitude and the frequency of the oscillator, and we show how the phase of the control signal influences the dynamics of the oscillator. A comprehensive bifurcation analysis in terms of the control phase and the control strength reveals large stability regions of the target periodic orbit, as well as an increasing number of unstable periodic orbits caused by the time delay of the feedback loop. Our results provide insight into the global features of time-delayed control schemes.  相似文献   

6.
The unstable periodic orbits of a chaotic system provide an important skeleton of the dynamics in a chaotic system, but they can be difficult to find from an observed time series. We present a global method for finding periodic orbits based on their symbolic dynamics, which is made possible by several recent methods to find good partitions for symbolic dynamics from observed time series. The symbolic dynamics are approximated by a Markov chain estimated from the sequence using information-theoretical concepts. The chain has a probabilistic graph representation, and the cycles of the graph may be exhaustively enumerated with a classical deterministic algorithm, providing a global, comprehensive list of symbolic names for its periodic orbits. Once the symbolic codes of the periodic orbits are found, the partition is used to localize the orbits back in the original state space. Using the periodic orbits found, we can estimate several quantities of the attractor such as the Lyapunov exponent and topological entropy.  相似文献   

7.
The classical deterministic dynamics of a Brownian particle with a time-dependent periodic perturbation in a spatially periodic potential is investigated. We have constructed a perturbed chaotic solution near the heteroclinic orbit of the nonlinear dynamics system by using the Constant-Variation method. Theoretical analysis and numerical result show that the motion of the Brownian particle is a kind of chaotic motion. The corresponding chaotic region in parameter space is obtained analytically and numerically.  相似文献   

8.
The classical deterministic dynamics of a Brownian particle with a time-dependent periodic perturbation in a spatially periodic potential is investigated. We have constructed a perturbed chaotic solution near the heteroclinic orbit of the nonlinear dynamics system by using the Constant-Variation method. Theoretical analysis and numerical result show that the motion of the Brownian particle is a kind of chaotic motion. The corresponding chaotic region in parameter space is obtained analytically and numerically.  相似文献   

9.
Employing symbolic dynamics for geodesic motion on the tesselated pseudosphere, the so-called Hadamard-Gutzwiller model, we construct extremely long periodic orbits without compromising accuracy. We establish criteria for such long orbits to behave ergodically and to yield reliable statistics for self-crossings and avoided crossings. Self-encounters of periodic orbits are reflected in certain patterns within symbol sequences, and these allow for analytic treatment of the crossing statistics. In particular, the distributions of crossing angles and avoided-crossing widths thus come out as related by analytic continuation. Moreover, the action difference for Sieber-Richter pairs of orbits (one orbit has a self-crossing which the other narrowly avoids and otherwise the orbits look very nearly the same) results to all orders in the crossing angle. These findings may be helpful for extending the work of Sieber and Richter towards a fuller understanding of the classical basis of quantum spectral fluctuations. Received 17 July 2002 Published online 29 November 2002  相似文献   

10.
We analyze the stabilization of an unstable periodic orbit (UPO) by periodic prediction-based control (PBC). We rigorously prove that, for 2-periodic orbits, a pulse strategy reduces the necessary control strength to stabilize the UPO. Moreover, we find that in some cases the periodic control prevents some undesirable effects induced by the PBC method. In this way, we provide an example of a dynamic Parrondo?s paradox: the switching between two undesirable dynamics results in a nicely periodic dynamic behavior.  相似文献   

11.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

12.
13.
A point particle sliding freely on a two-dimensional surface of constant negative curvature (Hadamard-Gutzwiller model) exemplifies the simplest chaotic Hamiltonian system. Exploiting the close connection between hyperbolic geometry and the group SU(1,1)/⦅±1⦆, we construct an algorithm (symboliv dynamics), which generates the periodic orbits of the system. For the simplest compact Riemann surface having as its fundamental group the “octagon group”, we present an enumeration of more than 206 million periodic orbits. For the length of the nth primitive periodic orbit we find a simple expression in terms of algebraic numbers of the form m + √2n (m, nϵN are governed by a particular Beatty sequence), which reveals a strange arithmetical structure of chaos. Knowledge of the length spectrum is crucial for quantization via the Selberg trace formula (periodic orbit theory), which in turn is expected to unravel the mystery of quantum chaos.  相似文献   

14.
只有一个非线性项的超混沌系统   总被引:5,自引:0,他引:5       下载免费PDF全文
周平  危丽佳  程雪峰 《物理学报》2009,58(8):5201-5208
构造了只包含一个非线性项的四维超混沌系统,得到了系统的Lyapunov指数谱、周期轨道、拟周期轨道、混沌和超混沌吸引子.给出了此超混沌系统的电路实现原理图,利用EWB仿真得到了与数值仿真完全相符的动力学行为.同时给出了实现此超混沌系统同步的一种方法,并利用严格数学理论证明了该混沌同步方法.在同步过程中并未删除响应系统的非线性项,理论分析与仿真计算表明同步方法的有效性. 关键词: 四维超混沌系统 非线性项 Lyapunov指数谱  相似文献   

15.
This study describes a global approach of controlling chaos to reduce tedious waiting time caused by using conventional local controllers. With Euler's method, a non-autonomous system is approximated by a non-linear difference system and then an approximate global Poincaré map function is derived from the difference system by iterating one or more periods of a periodic excitation. Based on the map function, unstable periodic orbits embedded in a chaotic motion can be detected and a global controller for a targeted unstable periodic orbit is designed. The global controller makes all the unstable periodic orbits vanish except a targeted periodic orbit. Furthermore, a Lyapunov's direct method is applied to confirm that the global controller can asymptotically stabilize the unique periodic orbit. For practical applications, system models are usually unknown. To obtain a mathematical model, non-linear system identification based on the harmonic balance principle is applied to an unknown chaotic system of a noisy environment. Simulation results demonstrate that the global controller successfully regularizes a chaotic motion even if the chaotic trajectory is far from the targeted periodic orbit.  相似文献   

16.
We discuss some of the models for eigenfunction localization in Hamiltonian systems. In particular, we review some of our work on classical parametric scaling of orbits and identification of localized states in a two-dimensional quartic oscillator system which is deep in the classically chaotic region. We show that visual methods are a necessary complement to quantitative methods based on information entropies. Our preliminary results indicate that the periodic orbit stability determines the degree of localization in a class of states, even when the stable regions are of negligible measure.  相似文献   

17.
Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles between saddle-type invariant sets. These saddles may be chaotic giving rise to "cycling chaos." The robustness of such attractors appears by virtue of the fact that the connections are robust within some invariant subspace. We consider two previously studied examples and examine these in detail for a number of effects: (i) presence of internal symmetries within the chaotic saddles, (ii) phase-resetting, where only a limited set of connecting trajectories between saddles are possible, and (iii) multistability of periodic orbits near bifurcation to cycling attractors. The first model consists of three cyclically coupled Lorenz equations and was investigated first by Dellnitz et al. [Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 1243-1247 (1995)]. We show that one can find a "false phase-resetting" effect here due to the presence of a skew product structure for the dynamics in an invariant subspace; we verify this by considering a more general bi-directional coupling. The presence of internal symmetries of the chaotic saddles means that the set of connections can never be clean in this system, that is, there will always be transversely repelling orbits within the saddles that are transversely attracting on average. Nonetheless we argue that "anomalous connections" are rare. The second model we consider is an approximate return mapping near the stable manifold of a saddle in a cycling attractor from a magnetoconvection problem previously investigated by two of the authors. Near resonance, we show that the model genuinely is phase-resetting, and there are indeed stable periodic orbits of arbitrarily long period close to resonance, as previously conjectured. We examine the set of nearby periodic orbits in both parameter and phase space and show that their structure appears to be much more complicated than previously suspected. In particular, the basins of attraction of the periodic orbits appear to be pseudo-riddled in the terminology of Lai [Physica D 150, 1-13 (2001)].  相似文献   

18.
We summarize various cases where chaotic orbits can be described analytically. First we consider the case of a magnetic bottle where we have non-resonant and resonant ordered and chaotic orbits. In the sequence we consider the hyperbolic Hénon map, where chaos appears mainly around the origin, which is an unstable periodic orbit. In this case the chaotic orbits around the origin are represented by analytic series (Moser series). We find the domain of convergence of these Moser series and of similar series around other unstable periodic orbits. The asymptotic manifolds from the various unstable periodic orbits intersect at homoclinic and heteroclinic orbits that are given analytically. Then we consider some Hamiltonian systems and we find their homoclinic orbits by using a new method of analytic prolongation. An application of astronomical interest is the domain of convergence of the analytical series that determine the spiral structure of barred-spiral galaxies.  相似文献   

19.
In this paper we study periodic orbit bifurcation sequences in a system of two coupled Morse oscillators. Time-reversal symmetry is exploited to determine periodic orbits by iteration of symmetry lines. The permutational representation of Tsuchiya and Jaffe is employed to analyze periodic orbit configurations on the symmetry lines. Local pruning rules are formulated, and a global analysis of possible bifurcation sequences of symmetric periodic orbits is made. Analysis of periodic orbit bifurcations on symmetry lines determines bifurcation sequences, together with periodic orbit periodicities and stabilities. The correlation between certain bifurcations is explained. The passage from an integrable limit to nointegrability is marked by the appearance of tangent bifurcations; our global analysis reveals the origin of these ubiquitous tangencies. For period-1 orbits, tangencies appear by a simple disconnection mechanism. For higher period orbits, a different mechanism involving 2-parameter collisions of bifurcations is found. (c) 1999 American Institute of Physics.  相似文献   

20.
Paul阱中共线三离子体系的经典动力学   总被引:5,自引:2,他引:3       下载免费PDF全文
施磊  段宜武  冯芒  朱熙文  方细明 《物理学报》1998,47(8):1248-1257
研究了在Paul阱囚禁场赝势作用下共线构形的三离子体系经典动力学特性.尽管这是一个非线性体系,但不存在混沌,即体系在任何能量下运动都是规则的,而相空间则由两个轨迹为对称和反对称周期(或准周期)轨道的KAM不变环面构成.体系的两条最简单的周期轨道S和A的周期随能量E的下降而增大,并在E趋于体系的最小值Emin=3.0时分别为反对称和对称谐振动. 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号