首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In vivo fluorescent monitoring of physiological processes with high‐fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation‐caused quenching (ACQ) and short‐wavelength fluorescence. The development of high‐performance and long‐wavelength aggregation‐induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline‐malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near‐infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale‐up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.  相似文献   

2.
利用具有聚集诱导发光特性的荧光染料4,4'-[(1E,1'E)蒽-9,10-二基双(乙烯-2,1-二基)]双(N,N-二甲基苯胺)(NDSA), 通过两亲性聚合物二硬脂酰基磷脂酰乙醇胺-聚乙二醇-N-羟基琥珀酰亚胺(DSPE-PEG-NHS)包覆的方法制备了明亮的橙色荧光纳米粒子, 其最大发射波长为559 nm, 在水溶液中具有2.89%的荧光量子产率. 该纳米粒子具有优异的发光特性和良好的生物相容性. 在该纳米粒子表面修饰肝癌细胞靶向的人类婆罗双树样基因-4(SALL4)抗体后, 荧光纳米粒子NDSA@SALL4可以特异性地靶向肝癌细胞, 还可以在细胞核富集, 呈现出明亮的橙色荧光, 为早期检测肝癌细胞提供了可能.  相似文献   

3.
Electrophoretic mobility and aggregation in suspensions of three types of microspheres (Ms 1, Ms 2 and Ms 3) are studied at different pH, ionic strengths and temperatures of the medium. Here Ms 1 is a core particle composed of poly(N-isopropylacrylamide-co-styrene). Ms 2 is a core-shell microsphere consisting of Ms 1 as the particle core covered with a surface layer of poly(N-isopropylacrylamide) hydrogel. Ms 3 is also a core-shell microsphere composed of MS-1 covered with a surface layer of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel. The charge density zN and the softness parameter 1/λ of the microspheres were obtained from the electrophoretic mobility data on the basis of an electrokinetic theory of soft particles. It is shown that when zN is large, suspensions of microspheres are always stable, showing no aggregation. When zN is small, the suspensions are stable for large 1/λ but show strong aggregation for small 1/λ.  相似文献   

4.
Aggregation-induced emission(AIE)luminogens(AIEgens)with high brightness in aggregates exhibit great potentials in biological imaging,but these AIEgens are seldom applied in super-resolution biological imaging,especially in the imaging by using the structural illumination microscope(SIM).Based on this consideration,we synthesized the donor-acceptor typed AIEgen of DTPA-BTN,which not only owns high brightness in the near-infrared(NIR)emission region from 600 nm to 1000 nm(photoluminescence quantum yield,PLQYs=11.35%),but also displays excellent photo-stability.In addition,AIE nanoparticles based on 4,7-ditriphenylamine-[1,2,5]-thiadiazolo[3,4-c]pyridine(DTPA-BTN)were also prepared with highly emissive features and excellent biocompatibility.Finally,the developed DTPA-BTN-based AIE nanoparticles were applied in the super-resolution cellular imaging via SIM,where much smaller full width at half-maximum values and high signal to noise ratios were obtained,indicating the superior imaging resolution.The results here imply that highly emissive AIEgens or AIE nanoparticles can be promising imaging agents for super-resolution imaging via SIM.  相似文献   

5.
In vivo fluorescent monitoring of physiological processes with high-fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation-caused quenching (ACQ) and short-wavelength fluorescence. The development of high-performance and long-wavelength aggregation-induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline-malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near-infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale-up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.  相似文献   

6.
7.
Trivalent lanthanide ions (Ln(3+)) doped inorganic nanocrystals (NCs) have currently attracted reviving interest and come to the forefront in nanophotonics owing to their potential applications in diverse fields such as luminescent biodetection and bioimaging. As an alternative to conventional biolabels, Ln(3+)-doped NCs show superior features including large stokes shift, multicolor fine-tuning, narrow emission band widths, high photostability, and low toxicity. Particularly, the long-lived luminescence and distinct upconversion (UC) of Ln(3+)-doped NCs are desirable for various bioapplications. The long-lived luminescence of Ln(3+) combined with time-resolved technique can efficiently suppress the interference from short-lived background, resulting in a high signal-to-noise ratio (S/N) and background-free measurements. Near-infrared excited UC emissions of Ln(3+) can bring no autofluorescence and no photodamage to cells or tissues, and thus UC NCs have been regarded as one of the most useful in vivo optical contrast agents. In this review, we outline the most recent development of Ln(3+)-doped NCs as biolabels from the controlled synthesis and surface functionalization of NCs to their bioapplications in heterogeneous and homogeneous biodetection as well as in vitro and in vivo bioimaging.  相似文献   

8.
Recently, lanthanide based nanocrystals with upconversion fluorescence emission have attracted a lot of interest and the nanocrystals have been used for bioimaging, biodetection, and therapeutic applications. Use of the nanocrystals for multiplexed detection has also been explored; however, nanocrystals with multicolor emission are required. Some efforts have been made to tune the emission spectra of the nanocrystals based on manipulation of upconverting lanthanide ions doped in the crystals or creation of core/shell structures. In this work, alkali ions with an ionic radius slightly larger or smaller than Na such as Li and K were doped into NaYF(4):Yb,Er nanocrystals and their effect on the crystal structure and subsequently the upconversion emission spectra were studied. It was found that the phase transition occurs in the nanocrystals when a different amount of Li and K was doped. Furthermore, the intensity ratios between the blue, green, and red emission peaks changed accordingly, and make it possible to tune the upconversion fluorescence of the nanocrystals by Li and K doping.  相似文献   

9.
A series of rhodamine B (RhB) encapsulated zeolitic imidazolate framework-8 (RhB@ZIF-8) composite nanomaterials with different concentrations of guest loadings have been synthesized and characterized in order to investigate their applicability to solid-state white-light-emitting diodes (WLEDs). The nanoconfinement of the rhodamine B dye (guest) in the sodalite cages of ZIF-8 (host) is supported by fluorescence spectroscopic and photodynamic lifetime data. The quantum yield (QY) of the luminescent RhB@ZIF-8 material approaches unity when the guest loading is controlled at a low level: 1 RhB guest per ~7250 cages. We show that the hybrid (luminescent guest) LG@MOF material, obtained by mechanically mixing a suitably high-QY RhB@ZIF-8 red emitter with a green-emitting fluorescein@ZIF-8 “phosphor” with a comparably high QY, could yield a stable, intensity tunable, near-white light emission under specific test conditions described. Our results demonstrate a novel LG@MOF composite system exhibiting a good combination of photophysical properties and photostability, for potential applications in WLEDs, photoswitches, bioimaging and fluorescent sensors.  相似文献   

10.
Si‐rhodamine (SiR) is an ideal fluorophore because it possesses bright emission in the NIR region and can be implemented flexibly in living cells. Currently, several promising approaches for synthesizing SiR are being developed. However, challenges remain in the construction of SiR containing functional groups for bioimaging application. Herein, we introduce a general and simple approach by a condensation reaction of diarylsilylether and arylaldehyde in o‐dichlorobenzene to synthesize a series of SiRs bearing various functional substituents. These SiRs have moderate to high quantum efficiency, tolerance to photobleaching, and high water solubility as well as NIR emitting, and their NIR fluorescence properties can be controlled through the photoinduced electron transfer (PET) mechanism. Fluorescence OFF‐ON switching effect is observed for SiR 9 in the presence of acid, which is rationalized by DFT/TDDFT calculations. Moreover, reversible stimuli response toward temperature is achieved. Since positive charge enables mitochondrial targeting ability and chloromethyl unit can covalently immobilize the dyes onto the mitochondrial via click reaction between the benzyl choride and protein sulfhydryls, SiR 8 is identified as a valuable fluorescent marker to visualize the morphology and monitor the temperature change of mitochondria with high photostability.  相似文献   

11.
InP/ZnS core/shell nanocrystals are prepared using a single-step heating-up method relying on the difference in reactivity of the applied InP and ZnS precursors. The obtained particles exhibit size-dependent emission in the range of 480-590 nm, a fluorescence quantum yield of 50-70%, and high photostability.  相似文献   

12.
通过简单的Wittig反应合成了一个荧光化合物9,10-二(N-苯基吲哚-3-乙烯基)蒽(IA-Ph); 通过核磁共振和质谱对其结构进行了确认; 利用荧光发射光谱和紫外吸收光谱对其光物理性质进行了表征. 结果表明, 化合物IA-Ph兼具聚集诱导荧光(AIE)和压致荧光变色性质, 在相同浓度下, 该化合物在THF/H2O(体积比1∶9)混合溶液中的荧光强度比在纯四氢呋喃(THF)溶液中增加了12倍, 具有明显的AIE效应. 通过简单而有效的机械力研磨, 化合物可以从初始的发绿光转变为研磨后的橙红光, 光谱红移约68 nm; 而且在加热或溶剂熏蒸条件下, 化合物的颜色可以回复到起始的绿光, 具有完全可逆性.  相似文献   

13.
《Polyhedron》2001,20(28):306-3306
Five new complexes of composition [Cu(dpt)Ni(CN)4] (1) (dpt=dipropylenetriamine), [Cu(dien)Ni(CN)4]·2H2O (2) (dien=diethylenetriamine), [Cu(N,N′-dimeen)Ni(CN)4]·H2O (3) (N,N′-dimeen=N,N′-dimethylethylenediamine), [Cu(N,N-dimeen)Ni(CN)4]·H2O (4) (N,N-dimeen=N,N-dimethylethylenediamine) and [Cu(trimeen)Ni(CN)4] (5) (trimeen=N,N,N′-trimethylethylenediamine) have been obtained by the reactions of the mixture of Cu(ClO4)2·6H2O, appropriate amine and K2[Ni(CN)4] in water and have been characterized by IR and UV–Vis spectroscopies and magnetic measurements. The crystal structure of [Cu(dpt)Ni(CN)4] (1) has been determined by single-crystal X-ray analysis. The structure of 1 consists of a one-dimensional polymeric chain ---Cu(dpt)---NC---Ni(CN)2---CN---Cu(dpt)--- in which the Cu(II) and Ni(II) atoms are linked by CN groups. The nickel atom is four coordinate with four cyanide-carbon atoms (two cyano groups are terminal and two cyano groups (in cis fashion) are bridged) in a square-planar arrangement and the copper atom is five coordinate with two cyanide-nitrogen and three dpt-nitrogen atoms, in a distorted square-pyramidal arrangement. The temperature dependence of magnetic susceptibility (2–300 K) was measured for compound 1. The magnetic investigation showed the presence of a very weak antiferromagnetic interaction (J=−0.16 cm−1) between the copper atoms within each chain through the diamagnetic Ni(CN)4 2− ions.  相似文献   

14.
The reaction of trialkylgallium or indium R3M (M=In, Ga; R=Me, Et) with N,N′-ethylenebis(salicylideneimine) or 1,2-N,N′-phenylenebis(salicylideneimine) yields seven intramolecularly coordinated organogallium or organoindium complexes. Two hydroxyl protons in the ligands react with both trialkylindium and trimethylgallium, while one hydroxyl group reacts exclusively with triethylgallium. The complexes obtained have been fully characterised by elemental analysis, 1H-NMR, IR and mass spectroscopy. The structure of methyl-N,N′-bis(salicylidene)-1,2-phenylenediaminoindium (1) has been determined by single-crystal X-ray analysis. The In atom is five coordinate in the structure. Fluorescence spectroscopy has shown that the maximum emission wavelength of 1 is 499 nm upon radiation by UV light.  相似文献   

15.
李宗英  陈新  章飞芳  杨丙成 《色谱》2022,40(8):730-735
制备了一种季铵化烯丙基缩水甘油醚(allyl glycidyl ether,AGE)改性聚合物基质的阴离子固定相应用于离子色谱系统。它是利用AGE与水解的聚甲基丙烯酸缩水甘油酯-二乙烯基苯poly(glycidylmethacrylate-divinylbenzene,GMA-DVB)微球表面残留双键通过表面自由基共聚,再通过N,N-二甲基乙醇胺(一种叔胺)进行开环反应制备得到的。通过考察有机叔胺类型、微球水解、单体和引发剂用量、反应温度和时间对7种阴离子分离性能的影响,优化了制备条件。采用扫描电镜、元素分析对所得阴离子固定相进行了表征。结果表明,采用预先水解的GMA-DVB微球(水解过程中微球表面丰富的环氧基团转化为羟基)相对于直接采用GMA-DVB微球有助于降低固定相的交换容量和微球自身的非离子吸附作用;通过淋洗液浓度和目标离子保留因子的拟合结果证实了该固定相保留机理为典型的离子交换作用。使用碳酸根淋洗液,在优化的色谱条件下,该固定相可在13 min内实现常见7种无机阴离子的基线分离,并表现出较高的柱效(Cl-理论塔板数为49000块/m)。该色谱柱实用性通过分析自来水实际样品进行了验证。  相似文献   

16.
The standard (p0 = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, in the gaseous phase of two Schiff bases, N,N′-bis(salicylaldehydo)ethylenediimine and N,N′-bis(salicylaldehydo)tetramethylenediimine, were determined from their enthalpies of combustion and sublimation, obtained by static bomb calorimetry in oxygen and by the Knudsen effusion technique, respectively. The enthalpies of fusion of both compounds have been determined by differential scanning calorimetry.  相似文献   

17.
The rational design of high‐performance fluorescent materials for cancer targeting in vivo is still challenging. A unique molecular design strategy is presented that involves tailoring aggregation‐induced emission (AIE)‐active organic molecules to realize preferable far‐red and NIR fluorescence, well‐controlled morphology (from rod‐like to spherical), and also tumor‐targeted bioimaging. The shape‐tailored organic quinoline–malononitrile (QM) nanoprobes are biocompatible and highly desirable for cell‐tracking applications. Impressively, the spherical shape of QM‐5 nanoaggregates exhibits excellent tumor‐targeted bioimaging performance after intravenously injection into mice, but not the rod‐like aggregates of QM‐2.  相似文献   

18.
Nakano S  Sakamoto K  Takenobu A  Kawashima T 《Talanta》2002,58(6):1263-1270
A flow-injection chemiluminescent (CL) method is proposed for the successive determination of nanogram levels of vanadium(IV) and total vanadium. The method is based on the catalytic effect of vanadium(IV) on the oxidation of purpurogallin by periodate to produce light emission at 4 °C. The presence of hydrogen carbonate enhanced the light emission arising from the vanadium(IV)-catalyzed reaction. Since vanadium(V) did not catalyze the CL reaction of purpurogallin, vanadium(V) was determined after being reduced to vanadium(IV) by using an on-line silver-reducing column. Calibration curves for vanadium(IV) and (V) were linear in the range 0.1–10 ng ml−1 with sampling rate of about 50 h−1. The limit of detection for signal-to-noise ratio of 2 was 0.05 ng ml−1 and the relative standard deviations were 1.4 and 1.6% for ten determinations of 2.0 ng ml−1 vanadium(IV) and (V), respectively. Interferences from metal ions could be eliminated by the use of O,O′-bis(2-aminoethyl)ethyleneglycol- N,N,N′,N′-tetraacetic acid and diphosphate as masking agents. The proposed method was successfully applied to the determination of vanadium(IV) and total vanadium in fresh water samples.  相似文献   

19.
N,N-Dimethylanilinium salt of molybdenum disulfide (MoS2) was developed as a novel cocatalyst for metallocene catalysts. The cocatalyst is composed of N,N-dimethylanilinium ion as a cationic part and “topotactic” reduction product of MoS2, obtained by acquisition of an electron by neutral host lattice of MoS2 without structural alteration, as an anionic part. In ethylene polymerization, addition of the N,N-dimethylanilinium salt of MoS2 to the bis(indenyl)zirconium dichloride (Ind2ZrCl2)/triethylaluminum (Et3Al) catalyst improved the catalytic activity per mmol of Ind2ZrCl2. The catalytic activity of this system activated by addition of the cocatalyst depended significantly on the amount of the cocatalyst and the N,N-dimethylanilinium ion content in the cocatalyst. Poly(ethylene) and poly(ethylene-co-1-hexene) obtained with the metallocene catalyst activated by addition of the cocatalyst have typical features such as narrow molecular weight distribution and narrow composition distribution like polymers obtained with conventional metallocene catalysts.  相似文献   

20.
Stable neutral luminescent radicals with unpaired electrons exhibit unique spin-allowed doublet-doublet transitions, which has attracted significant attention. Although they are pure organic molecules without metal ions thus thought to have low biological toxicity, the application of luminescent radicals to bioimaging has rarely been reported. Here, a stable radical with efficient near-infrared(NIR) emission and good photostability was designed and synthesized. After being wrapped into nanoparticles, it was applied to cell fluorescence imaging. The cytotoxicity experiments suggested that the nanoparticles have remarkable biocompatibility and excellent stability. An NIR fluorescent signal was successfully observed in the cytoplasm of HCT116 cells. The experimental results gave the first example of NIR emitting radical nanoparticles for cell fluorescence imaging and proved the feasibility of the application of luminescent radicals to fluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号