首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Two mixtures of four 1-alkyl-3-methylimidazolium ionic liquids (ILs) salts associated to the anions tetrafluoroborate or hexafluorophosphate were analyzed by reversed-phase liquid chromatography with three different stationary phases: Kromasil C(8), Zorbax Extend C(18) and Zorbax Sb-Aq. The effect on retention of various inorganic salts (NaCl, NaH(2)PO(4,) NaBF(4), NaClO(4) and NaPF(6)) added to acetonitrile/water mobile phases was studied. The three columns gave similar separation profiles. In all cases, the retention of ILs increased with the increasing affinity of the inorganic anions for the apolar stationary phases; a phenomenon called chaotropicity. The chaotropic anion order is Cl(-) approximately H(2)PO(4)(-) < BF(4)(-) approximately ClO(4)(-) < PF(6)(-). It is established that the presence of chaotropic anions in the mobile phase do not permit to differentiate between ILs associated to different anions. However, chloride or dihydrogenphosphate added salts do not fully screen the retention differences between ILs associated with different anions. Distorted and even split peaks may appear in the chromatogram depending on the nature and concentration of the injected ILs. In the RPLC analysis of imidazolium-based IL, it is recommended to add to the mobile phase significant amounts of a salt containing a chaotropic anion. This salt addition will improve the IL peak shapes and give reproducible retention factors. LODs in the low microgram range ( approximately 5 nmol) were obtained with the Kromasil C(8) column with a 50/50 acetonitrile-water mobile phase containing 0.01 M NaPF(6) added salt and 230 nm UV detection.  相似文献   

2.
以双三氟甲烷磺酰亚胺离子([NTf2]-)为阴离子,合成阳离子烷基取代不同(C1、C2和C4)的硅烷基咪唑离子液体,以其为固定相制备气相色谱填充柱。 硅烷基咪唑离子液体为强极性固定相;阳离子结构影响固定相的热稳定性、极性和分离性能。 在这些离子液体固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑双三氟甲烷磺酰亚胺([PBIM]NTf2)对Grob试剂分离性能较好。 利用溶剂化作用参数模型,评价[PBIM]NTf2固定相特性,研究固定相-组分分子之间相互作用机制;同时考察[PBIM]NTf2色谱柱对不同类型化合物的分离性能。 结果表明,[PBIM]NTf2固定相主要作用力是氢键碱性和偶极作用,对烷烃、醇、酯和胺等不同类型的样品组分表现出良好的分离能力。  相似文献   

3.
The interest of using ionic liquids (ILs) as stationary phases in gas chromatography (GC) has increased in recent years. This is largely due to the fact that new classes of ILs are being developed that are capable of satisfying many of the requirements of GC stationary phases. This review highlights the major requirements of GC stationary phases and describes how molten salts/ILs can be designed to largely meet these needs. The retention characteristics of organic solutes will be discussed for ammonium, pyridinium, and phosphonium-based molten salts followed by imidazolium, pyridinium, pyrollidinium, and phosphonium-based IL stationary phases. The versatility of ILs allows for the development of stationary phases based on dicationic ILs, polymeric ILs, and IL mixtures. To aid in choosing the appropriate IL stationary phase for a particular separation, the reader is guided through the different types of stationary phases available to identify those capable of providing the desired separation selectivity of organic solutes while allowing for flexibility in ranges of temperature used throughout the separation.  相似文献   

4.
The silica-based stationary phases with favorable physical characteristics are the most popular in liquid chromatography. However, there are several problems with silica-based materials: severe peak tailing in the chromatography of basic compounds, non-reproducibility for the same chemistry columns, and limited pH stability. Ionic liquids (ILs) as mobile phase components can reduce peak tailing by masking residual free silanol groups. The chromatographic behavior of some alkaloids from different classes was studied on C18, phenyl, and pentafluorophenyl columns with different kinds and concentrations of ionic liquids as additives to aqueous mobile phases. Ionic liquids with different alkyl substituents on different cations or with different counterions as eluent additives were investigated. The addition of ionic liquids has great effects on the separation of alkaloids: decrease in band tailing, increase in system efficiency, and improved resolution. The retention, separation selectivity, and sequence of alkaloid elution were different when using eluents containing various ILs. The increase of IL concentration caused an increase in silanol blocking, thus conducted to decrease the interaction between alkaloid cations and free silanol groups, and caused a decrease of alkaloids retention, improvement of peak symmetry, and increase of theoretical plate number in most cases. The effect of ILs on stationary phases with different properties was also examined. The different properties of stationary phases resulted in differences in analyte retention, separation selectivity, peak shape, and system efficiency. The best shape of peaks and the highest theoretical plate number for most investigated alkaloids in mobile phases containing IL was obtained on pentafluorophenyl (PFP) phase.  相似文献   

5.
A new series [CnOmmim]Cl of imidazolium cation-based ionic liquids (ILs), with an ether functional group on the alkyl side-chain, has been prepared. The possibility of analyzing the ionic liquids by high performance liquid chromatography (HPLC) was investigated on mixed-mode reversed/cation exchange stationary phase with the aqueous-acetonitrile mobile phase. Elution parameters, such as retention factor, selectivity and column efficiency, were studied as functions of mobile phase composition and pH. The ILs were characterized by elemental analysis, and infrared, UV and 1H, 13C NMR spectroscopy.  相似文献   

6.
Polycationic ionic liquids (ILs) are an attractive class of ILs with great potential applicability as gas chromatography stationary phases. A family of hexacationic imidazolium ILs derived from the cycloalkanol family was chemically first prepared in a straightforward manner and then applied for analytical separation purposes. Four tuneable engineering vectors, namely cation ring size structure, anion nature, spatial disposition of cycloalkanol substituents and O‐substitution, were considered as experimental parameters for the design of the desired ionic liquids. A total number of five new phases based on a common benzene core respectively exhibited column efficiencies around to 2500 plates/m, broad operating temperature ranges and also, even more importantly, good thermal stabilities (bleeding temperature between 260 and 365°C), finding variations in the selectivity and analytes elution orders depending on the IL structures. Their solvation characteristics were evaluated using the Abraham solvation parameter model, establishing clear correlations between their cation structure and retention capability with respect to certain analytes. The study of relationships between the ILs structure and solvation parameters gives us an idea of the IL stationary phase to be used for specific separations.  相似文献   

7.
The formation, stabilisation and reactivity of contact ion pairs of non‐protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI‐MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N‐alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent‐separated ions.  相似文献   

8.
Ionic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies. The impact of different alcohol and IL characteristics, including alcohol chain length, cation alkyl chain length, anion, different substituent groups on the pyridinium cation, and type of cation (pyridinium vs imidazolium) will be discussed. In general, the same type of behavior is observed for pyridinium and imidazolium ILs, with all systems studied exhibiting upper critical solution temperature behavior. The impacts of alcohol chain length, cation chain length, and anion, are the same for pyridinium ILs as those observed previously for imidazolium ILs. However, the effect of cation type on the phase behavior is dependent on the strength of the cation-anion interaction. Additionally, all systems from this study and our previous work for imidazolium ILs were modeled using the nonrandom two-liquid (NRTL) equation using two different approaches for determining the adjustable parameters. For all systems, the NRTL equation with binary interaction parameters with a linear temperature dependence provided a good fit of the experimental data.  相似文献   

9.
The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.  相似文献   

10.
Xylose and glucose, as the main hydrolyzed products of plant cell wall, were separated by silica-confined ionic liquid (IL) stationary phases. Five different stationary phases were synthesized and characterized. Instead of using the traditional NH2 column, the imidazolium stationary phases exhibit excellent retention to the xylose and glucose. The retention factor and resolution of the monosaccharides decreased with decreasing acetonitrile concentration. In addition, the effects of the IL cations and anions on the retention of xylose and glucose were studied and the adsorption behavior of these two monosaccharides on the stationary phases was investigated. Then the mobile phase and temperature were optimized to improve the performance for the separation of xylose and glucose.  相似文献   

11.
运用密度泛函理论B3LYP方法及6-311++G(d,p)基组对11种咪唑氟硼酸离子液体进行了研究.选择相应化合物的离子体系{[XIM][BF4]n}(n-1)-(n=2,3)作为研究对象,即研究体系由一个烷基咪唑阳离子XIM+和2-3个BF4-阴离子构成,对其进行结构优化.在优化得到的最低能量构型的基础上计算了分子内阳离子与阴离子间的相互作用能,同时考虑了基组重叠误差的修正.结果表明所研究离子体系的离子间相互作用能与离子液体的实验熔点之间存在明确的线性关系,并且所得到的线性方程与氨基酸阳离子型离子液体中存在的线性关系相近.我们的工作为今后借助量子化学方法设计功能化离子液体提供了一定的理论基础.  相似文献   

12.
The solvation and the dynamic properties of apolar model solutes in alkyl imidazolium‐based ionic liquids (IL) are studied by using all‐atom molecular dynamics simulations. In regards to specific IL effects, we focused on the often used 1‐ethyl‐3‐methyl imidazolium cation in combination with the anions tetrafluoroborate, acetate, and bis(trifluoromethanesulfonyl)imide. Our findings reveal that the size of the anion crucially influences the accumulation behavior of the cations, which results in modified IL solvation properties. Deviations between the different alkyl imidazolium‐based IL combinations can be also observed with regard to the results for the radial distribution functions, the number of surrounding molecules, and the molecular orientation. The analysis of the van Hove function further shows pronounced differences in the dynamic behavior of the solutes. The simulations verify that the solute mobilities are mainly influenced by the composition of the local solvent shell and the properties of the underlying Lennard–Jones interactions. Additional simulations with regard to modified short‐range dispersion energies for alkyl imidazolium‐based ILs validate our conclusions.  相似文献   

13.
Poly(ionic liquid)‐modified stationary phases can have multiple interactions with solutes. However, in most stationary phases, separation selectivity is adjusted by changing the poly(ionic liquid) anions. In this work, two poly(ionic liquid)‐modified silica stationary phases were prepared by introducing the cyano or tetrazolyl group on the pendant imidazolium cation on the polymer chains. Various analytes were selected to investigate their mechanism of retention in the stationary phases using different mobile phases. Two poly(ionic liquid)‐modified stationary phases can provide various interactions toward solutes. Compared to the cyano‐functionalized poly(ionic liquid) stationary phase, the tetrazolyl‐functionalized poly(ionic liquid) stationary phase provides additional cation‐exchange and π‐π interactions, resulting in different separation selectivity toward analytes. Finally, applicability of the developed stationary phases was demonstrated by the efficient separation of nonsteroidal anti‐inflammatory drugs.  相似文献   

14.
We investigated the effects of the concentration of naphthalene sulphonic acids (NSAs) as anionic test compounds in the injected sample and of the salt additives to the mobile phase on ion-exclusion. The retention behaviour of NSAs sensitively reflects even minor changes in the ionic and hydrophobic interactions and can be useful for predicting the effects of the stationary phases in reversed-phase chromatography of polar and ionic compounds, both small ones and biopolymers, e.g., oligonucleotides. We studied chromatographic properties of several stationary phases intended for separations in aqueous mobile phases: a C18 column end-capped with polar hydrophilic groups, a densely bonded C8 column doubly end-capped with short alkyl groups, a short alkyl stationary phase designed to keep full pore accessibility in highly-aqueous mobile phases and a Bidentate column with “bridged” C18 groups attached to the silica hydride support. The chemistry and pore structure of various types of column packing materials and of the salt additives to the mobile phase affect the proportion of the pore volume non-accessible to anions due to ion-exclusion and consequently the peak asymmetry and hydrophobic selectivity in reversed-phase chromatography of organic acids. We also addressed the problems connected with the determination of column hold-up volume in aqueous mobile phases. The accessibility of the stationary phase for anionic compounds in contact with the sample zone is affected by ion-exclusion due to repulsive interactions with the negatively charged surface in the pores of the stationary phase. The accessible part of the stationary phase increases and consequently the migration velocity along the column decreases with increasing concentration of the sample in the zone moving along the column. Because of a limited access to the stationary phase, its capacity can be easily overloaded. The combination of the column overload and ion-exclusion effects may result in fronting or tailing peak asymmetry. To explain this behaviour, we proposed a modified Langmuir model, respecting the variation of the column capacity due to the effects of sample concentration on ion-exclusion.  相似文献   

15.
Radical intermediates generated in radiolysis and photoionization of ionic liquids (ILs) composed of ammonium, phosphonium, pyrrolidinium, and imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions have been studied using magnetic resonance spectroscopy. Large yields of terminal and penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium, and pyrrolidinium cations, but not for imidazolium cation. This pattern is indicative of efficient deprotonation of a hole trapped on the parent cation (the radical dication) that competes with rapid electron transfer from a nearby anion. This charge transfer leads to the formation of stable N- or O-centered radicals; the dissociation of parent anions is a minor pathway. Addition of 10-40 wt % of trialkyl phosphate (a common extraction agent) has relatively little effect on the fragmentation of the ILs. The yield of the alkyl radical fragment generated by dissociative electron attachment to the trialkyl phosphate is <4% of the yield of the radical fragments derived from the IL solvent. The import of these observations for radiation stability of the prospective nuclear cycle extraction systems based upon the ILs is discussed.  相似文献   

16.
The cationic nature of basic drugs gives rise to broad asymmetrical chromatographic peaks with conventional C18 columns and hydro-organic mixtures, due to the ionic interaction of the positively charged solutes with the free silanol groups on the alkyl-bonded reversed-phase packing. Ionic liquids (ILs) have recently attracted some attention to reduce this undesirable silanol activity. ILs are dual modifiers (with a cationic and anionic character), which means that both cation and anion can be adsorbed on the stationary phase, giving rise to interesting interactions with the anionic free silanols and the cationic basic drugs. A comparative study of the performance of four imidazolium-based ILs as modifiers of the chromatographic behaviour of a group of β-blockers is shown. The ILs differed in the adsorption capability of the cation and anion on C18 columns. Mobile phases without additive and containing a cationic (triethylamine, TEA) or anionic (sodium dodecyl sulphate, SDS) additive were used as references for the interpretation of the behaviours. The changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on the changes in retention and peak shape of the β-blockers. The silanol suppressing potency of the additives, and the association constants between the solutes and modified stationary phase or additive in the mobile phase, were estimated. The study revealed that SDS and the ionic liquid 1-hexyl-3-methylimidazolium tetrafluoroborate are the best enhancers of chromatographic peak shape among those studied.  相似文献   

17.
The electrochemical stability of 10 organic cations, which can be used in ionic liquids (IL), was investigated as solutes in acetonitrile (ACN). The stability of three of the salts, BenMe2EtNCl (salt III), 1-butyl-2-methyl pyrrolidium chloride (salt VI), and its structural isomer, BuMe2ProNCl (salt VII), were also compared in chloroaluminate ILs. The chloroaluminate ILs of salts VI and VII are investigated for the first time. The NaCl-neutralized ILs of salts VI and VII have melting points of 43.2 and 3.7 degrees C, respectively. The benzyl-substituted cation, salt III, was more easily reduced in ACN or as the neutral chloroaluminate IL than the alkyl-substituted cation, salt VII, due to the better leaving ability of the benzyl group. Mass spectroscopy measurements before and after electrolysis on the benzyl-substituted solutions confirmed that reduction involves the loss of an alkyl group. In ACN, salt VI was found to be the most difficult to reduce (1 mA/cm2 at -2.09 V) due to its cyclic structure. However, in the chloroaluminate IL, the pyrrolidinium cation was more easily reduced than salt III or its isomer, salt VII, resulting in an insoluble black deposit. This is consistent with the mass spectrometry data, which do not show formation of low-molecular-weight products, as in the reduction of salts III and VII. The IL of salt VII was the most stable in the presence of sodium. Sodium ions could be reduced and reoxidized with a maximum Coulombic efficiency of 94.1% versus 87.2% for salt VI. Reduction of the pyrrolidinium cation produces insoluble products, most likely through opening of the cyclic ring, and an inferior medium for sodium ion reduction compared to the benzyl- and butyl-substituted cations, even though reduction of the cation occurs at a more negative potential in acetonitrile.  相似文献   

18.
The effect of ionic liquids (ILs) on the solubility of cellulose was investigated by changing their anions and cations. The structural variation included 11 kinds of cations in combination with 4 kinds of anions. The interaction between the IL and cellobiose, the repeating unit of cellulose, was clarified through nuclear magnetic resonance (NMR) spectroscopy. The reason for different dissolving capabilities of various ILs was revealed. The hydrogen bonding interaction between the IL and hydroxyl was the major force for cellulose dissolution. Both the anion and cation in the IL formed hydrogen bonds with cellulose. Anions associated with hydrogen atoms of hydroxyls, and cations favored the formation of hydrogen bonds with oxygen atoms of hydroxyls by utilizing activated protons in imidazolium ring. Weakening of either the hydrogen bonding interaction between the anion and cellulose, or that between the cation and cellulose, or both, decreases the capability of ILs to dissolve cellulose.  相似文献   

19.
In recent years, great progress has been made in the dissolution of cellulose with ionic liquids (ILs). However, the mechanism of cellulose dissolution, especially the role the IL cation played in the dissolution process, has not been clearly understood. Herein, the mixtures of cellulose with a series of imidazolium‐based chloride ionic liquids and 1‐butyl‐3‐methyl pyridinium chloride ([C4mpy]Cl) were simulated to study the effect that varying the heterocyclic structure and alkyl chain length of the IL cation has on the dissolution of cellulose. It was shown that the dissolution of cellulose in [C4mpy]Cl is better than that in [C4mim]Cl. For imidazolium‐based ILs, the shorter the alkyl chain is, the higher the solubility will be. In addition, an all‐atom force field for 1‐allyl‐3‐methyl imidazolium cation ([Amim]+) was developed, for the first time, to investigate the effect the electron‐withdrawing group within the alkyl chain of the IL cation has on the dissolution of cellulose. It was found that the interaction energy between [Amim]+ and cellulose was greater than that between [C3mim]+ and cellulose, indicating that the presence of electron‐withdrawing group in alkyl chain of the cation enhanced the interaction between the cation and cellulose due to the increase of electronegativity of the cations. These findings are used to assess the cationic effect on the dissolution of cellulose in ILs. They are also expected to be important for rational design of novel ILs for efficient dissolution of cellulose.  相似文献   

20.
Abstract

Alkyl-modified silica (RSi) and polystyrenedivinylbenzene (PRP-1) stationary phases are compared for the chromatographic separation of inorganic analyte anions and cations using hydro-phobic ions of opposite charge as mobile phase additives. Tetra-alkylammonium salts were used for anion separations and alkyl sulfonate salts for cation separations. Two major equilibria influence the retention of analyte ions on PRP-1. These are: retention of the hydrophobic ion on PRP-1 and an ion exchange selectivity between the hydrophobic counterion and the analyte ion. When using RSi retention is also influenced by ion exchange at residual silanol groups, which act as weak cation exchange sites. Mobile and stationary phase variables that influence analyte retention are identified. Optimization of these provides favorable eluting conditions for the separation of inorganic ionic analytes. Of particular interest is the potential use of PRP-1 and RSi columns for the separation of inorganic cations; conditions for the separation of alkali metals and alkaline earths are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号