首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 960 毫秒
1.
中性束注入是等离子体加热和电流驱动的重要方式之一,对EAST中性束注入的精确模拟对未来物理实验至关重要.采用ONETWO和NUBEAM程序模拟4MW、80keV中性束同向注入,不同的等离子体密度剖面导致不同的电子和离子加热、穿透功率损失、束驱动电流以及中子发射等.等离子体密度在以上的物理参数的演化中起着重要的作用.对EAST两种密度方案下中性束注入的效果进行了分析和讨论,并对未来中性束实验提供了一些预言性的建议和方案.  相似文献   

2.
采用1.5维的放电模拟程序TSC结合蒙特卡罗程序NUBEAM对使用中性束加热的EAST放电全过程进行数值模拟研究。分析了典型实验参数条件下的中性束的加热及电流驱动效果。讨论了不同背景等离子体密度对中性束加热及电流驱动效果的影响。模拟结果表明,中性束的注入使得背景等离子体温度有了较大幅度的提升,并能驱动出一定份额的非感应电流;适当降低背景等离子体密度有助于提高中性束的加热及电流驱动效率。  相似文献   

3.
中性束注入(NBI)是磁约束核聚变装置等离子体加热和电流驱动的重要手段。依据东方超环(EAST)NBI实验运行特点,设计了基于网络通讯的集散式控制系统。NBI控制系统采用计算机网络技术,按照控制层次分为远程监控层、服务器控制层和现场控制层,三层控制结构易于系统功能扩展与设备升级。一条束线的两个离子源可以独立运行控制,这为EAST第二条束线控制扩展奠定基础。实验表明,NBI控制系统具备了远程监控、连锁保护和数据处理功能,满足了NBI实验运行的自动化和可视化的需求。  相似文献   

4.
中性束注入(NBI)是托卡马克装置重要的辅助加热与电流驱动手段,中性原子的离化是决定中性束的加热(能量和粒子沉积剖面)和电流驱动效率的关键环节。通常情况下,利用背景等离子体参数与中性束参数模拟计算快的中性粒子与等离子体的离化,即中性束沉积过程,进而分析托卡马克中性束加热和电流驱动效果。束发射光谱是高能中性粒子注入等离子体后,与等离子体的电子、离子发生碰撞激发,中性粒子退激发过程中产生的一系列特征谱线,其束发射光谱强度受等离子体密度、温度、束能量、束密度等因素影响,可以利用束发射光谱强度变化研究中性束的衰减特性。在EAST托卡马克上通过实验测量中性束粒子与等离子体碰撞激发的光谱强度,分析得到了中性束在不同等离子体密度以及不同中性束能量下的衰减特性,并采用主动束光谱仿真与数值分析软件(SOS)进行了相应的模拟计算,研究表明实验测量与模拟计算结果两者具有较好的一致性,这验证了通过实验测量束发射光谱获取中性束衰减特征的可行性。  相似文献   

5.
对EAST中性束反向注入过程中等离子体加热和电流驱动进行了实验研究,并采用了美国普林斯顿大学等离子体物理实验室开发的TRANSP程序对高功率中性束注入过程中能量热输运进行了分析.结果表明,中性束注入可有效提高本底等离子体温度,产生束驱动非感应电流,提高等离子体旋转以及有效改善等离子体约束.  相似文献   

6.
对EAST中性束反向注入过程中等离子体加热和电流驱动进行了实验研究,并采用了美国普林斯顿大学等离子体物理实验室开发的TRANSP 程序对高功率中性束注入过程中能量热输运进行了分析。结果表明,中性束注入可有效提高本底等离子体温度,产生束驱动非感应电流,提高等离子体旋转以及有效改善等离子体约束。  相似文献   

7.
高能量、大功率中性束注入是对大型受控核聚变装置进行等离子体加热、无感电流驱动并控制电流分布和点火燃烧温度的主要方法。由于负离子在高能量下仍具有很高的中性转换效率,基于负离子中性转换的方法已成为研制高能中性束注入器的主要手段。为此,我们对800keV、5电极强流负离子束系统进行了数值模拟研究。  相似文献   

8.
高能量、大功率中性束注入是对大型受控核聚变装置进行等离子体加热和电流驱动的有效手段。因此势必要发展在高能量下仍具有较高中性转换效率的负离子-中性束注入器。  相似文献   

9.
结合全超导托卡马克中性束注入系统(EAST NBI)的工作原理,采用水冷热测靶形式的离子吞食器回收和测量未被中性化粒子。根据EAST NBI系统对离子吞食器物理特性、空间限制、测量需求及冷却性能等方面的要求,对靶板材料选择、结构设计及布置等进行了分析,给出了离子吞食器具体设计方案。该方案单侧吸收靶板呈V形结构,单个靶板冷却方式采用内置并联冷却水管结构。根据该方案加工获得了EAST NBI系统离子吞食器装置。仿真和实验校验结果验证了本装置可以满足NBI系统4 MW高功率、10 s长脉冲的运行要求。  相似文献   

10.
东方超环(EAST)上高速真空紫外(VUV)成像系统是一套选择性测量中心波长为13.5 nm的等离子体线辐射的光学成像系统。此系统具有高时空分辨能力,主要用于边界(包括台基区)等离子体行为研究。该系统已经投入EAST等离子体物理实验并获得了大量的实验数据。基于这些数据,分析了VUV诊断系统的信号强度与等离子体宏观参数之间的相关性,着重研究了EAST上中性束注入(NBI)加热功率、杂质(碳和锂)水平、电子密度等因素对VUV信号强度的影响。结果与预期基本一致:随着NBI功率的增加,VUV信号强度随之增强;VUV信号强度与电子密度、杂质水平呈现线性关系。此外,本文还评估了由于NBI注入引起的电荷交换复合产生的C5+离子对VUV信号的贡献,结果表明这部分贡献可以忽略不计。  相似文献   

11.
This research applies experimental measurements and NUBEAM, ONETWO and TRANSP modules to investigate the shine-through(ST) loss ratio and beam heating percentage of neutral beam injection on EAST. Measurements and simulations confirm that the ST loss ratio increases linearly with beam energy, and decreases exponentially with plasma density. Moreover, using the multi-step fitting method, we present analytical quantitative expressions of ST loss ratio and beam heating percentage, which are valuable for the high parameter long-pulse experiments of EAST.  相似文献   

12.
中性束注入(NBI)是托卡马克装置四种辅助加热手段(中性束注入、低杂波、离子回旋段波、电子回旋段波)中加热效率最高、物理机制最清楚的一种等离子体加热技术,是国际聚变界公认的最有效的辅助加热手段之一。为了探究EAST-NBI的穿透损失,通过对穿透损失率产生原理的理论分析,设计了具体硬件电路框图和实验方案,并通过实验验证了理论推导的正确性。具体做法首先通过对离子源束斑内中心点热电偶进行定量标定的方法作为穿透损失计算的标准。通过石墨瓦上热电偶单位能量下的温升与标定热电偶的温升之比来对穿透损失率进行计算。实验结果表明在一定的束能范围内,穿透损失率随着注入束能的增加而线性增长,穿透损失率随着等离子体密度增长呈指数衰减。  相似文献   

13.
为了判断中性束注入加热效果和研究等离子体宏观旋转和有效电荷数(Zeff)对中子出射的影响,结合实验数据,利用TRANSP模拟程序研究了EAST中性束注入加热时,等离子体旋转速度、有效电荷数Zeff以及等离子体储能与中子出射率的关系。模拟结果表明,在能量为65keV、功率为2.89MW的中性束注入加热时,等离子体产生较大的旋转,旋转减少快离子热化时间,降低中子产额;有效电荷数Zeff增加时,快离子投掷角散射增强,束靶反应减少,中子产额缩减。中子出射率随等离子体储能的增加而增加。  相似文献   

14.
对EAST装置在相同束放电参数不同等离子体电流平台下开展的束反向注入实验进行了比较分析,并利用NUBEAM程序分析了不同的等离子体电流放电平台对束电流驱动、束功率沉积、束功率沉积分布及束能量损失的影响,以此来寻求优化的注入本底等离子体参数。结果表明,较高的电流平台更有利于束与等离子体的作用以及更有效提高本底等离子体温度、束驱动电流及等离子体旋转,更有效改善等离子体约束品质。  相似文献   

15.
Comparative analysis of EAST neutral beam counter-injection experiment is carried out with the same beam parameters and different plasma current platforms. At the same time, the NUBEAM code is used to analyze beam current drive, power deposition, beam power deposition profile and beam energy loss, in order to optimize background plasma parameters. The results show that the higher current platform is more advantageous to the effect of beam on plasma, more effectively improving the background plasma temperature, beam-drive current, plasma rotation as well as the quality of plasma confinement.  相似文献   

16.
中性束注入是等离子体加热和电流驱动的最有效方法之一。中性束注入的三个基本过程为:离子束的产生,离子束的中性化和中性束的传输,其中,离子束的中性化是关键环节之一。对于EAST-NBI气体中性化室而言,中性化室内气体靶厚度会直接影响离子束的中性化效率,而且还会进一步影响到中性束的传输效率。基于多普勒频移效应,提出了一种新的诊断气体靶厚度的方法,并且已经被应用于EASTNBI测试平台上。该方法主要是基于中性束的束成分随气体靶厚度的演化过程,利用中性束发射Dα光谱线强度完成计算。因此,它被应用于中国科学院等离子体物理研究所EASTNBI装置上。在中性化室出口处的观测窗口上进行测量,在束能量为40~65 keV时,气体靶厚度值为(0.16~0.22)×1016 cm-2,随着引出束流的变化,气体靶厚度随之改变。根据质量守恒定律,对中性化室内的气体靶厚度进行一个粗略的估算,估算的结果与测量的结果基本保持一致,从而证明了该诊断方法的合理性。综上,实验结果表明,该种基于多普勒频移效应的光谱诊断法可以被用于测量中性化室内的气体靶厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号