首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasound (US) drug release system using cellulose based hydrogel films was developed as triggered to mimosa. Here, the mimosa, a fascinating drug to cure injured skin, was employed as the loading drug in cellulose hydrogel films prepared with phase inversion method. The mimosa hydrogels were fabricated from dimethylacetamide (DMAc)/LiCl solution in the presence of mimosa, when the solution was exposed to ethanol vapor. The US triggered release of the mimosa from the hydrogel matrix was carried out under following conditions of US powers (0–30 W) and frequencies (23, 43 and 96 kHz) for different mimosa hydrogel matrix from 0.5 wt% to 2 wt% cellulose solution. To release the drug by US trigger from the matrix, the better medicine release was observed in the matrix prepared from the 0.5 wt% cellulose solution when the 43 kHz US was exposed to the aqueous solution with the hydrogel matrix. The release efficiency increased with the increase of the US power from 5 to 30 W at 43 kHz. Viscoelasticity of the hydrogel matrix showed that the hydrogel became somewhat rigid after the US exposure. FT-IR analysis of the mimosa hydrogel matrixes showed that during the US exposure, hydrogen bonds in the structure of mimosa–water and mimosa–cellulose were broken. This suggested that the enhancement of the mimosa release was caused by the US exposure.  相似文献   

2.
Ultrasound (US)-triggered nicotine release system in a cellulose hydrogel drug carrier was developed with three different cellulose concentrations of 0.45 wt%, 0.9 wt%, and 1.8 wt%. The nicotine-loaded cellulose hydrogels were fabricated by the phase inversion method when the nicotine and cellulose mixture in the 6 wt% LiCl/N, N-dimethylacetamide solvent was exposed to water vapor at room temperature. Nicotine was used as the medicine due to its revealed therapeutic potential for neurodegenerative diseases like Alzheimer's and Parkinson's diseases. The behavior of US-triggered nicotine release from nicotine-cellulose hydrogel was studied at 43 kHz US frequency at the changing US output powers of 0 W, 5 W, 10 W, 20 W, 30 W, and 40 W. The significant US-triggered nicotine release enhancement was noted for the hydrogels made with 0.9 wt% and 1.8 wt% cellulose loading. The matrix made with 0.9 wt% cellulose was exhibited the highest nicotine release at the 40 W US power, and differences in nicotine release at different US powers were noticeable than at 0.45 wt% and 1.8 wt% cellulose loadings. For the three cellulose hydrogel systems, the storage modulus (G′) values at the 0.01 wt% strain rate were dropped from their initial values due to the US irradiation. This reduction was proportionately decreased when the US power was increased. The deconvolution of FTIR spectra of nicotine-loaded cellulose films before and after US exposure was suggested breakage of cellulose-nicotine and cellulose-water in the matrix; thus, the stimulated nicotine release from the cellulose matrix was promoted by the US irradiation.  相似文献   

3.
The use of microspheres as drug delivery vehicles for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The present paper describes the influence of process variables on the encapsulation and loading efficiency of 5-Fluorouracil (5-FU) in gelatin/chitosan (Gel/Cs) microspheres. The influences of preparation parameters, including the contents of the emulsifier Span-80, the cross-linking agent and 5-FU, and the stirring speed, on drug loading and encapsulation efficiency of the microspheres were investigated. The experimental results indicated that drug loading and encapsulation efficiency of microspheres increased with increasing concentration of the cross-linking agent; and then decreased when the concentration of the cross-linking agent was higher than 0.3 ml·g?1 of Gel/Cs. Drug loading and encapsulation efficiency increased with increasing concentration of Span-80; they reached the maximum value when the concentration of the emulsifier was 0.012 g·ml?1. The loading and encapsulation efficiency of the microspheres also increased with increasing stirring speed. In addition, drug loading and encapsulation efficiency increased with increasing concentration of 5-FU; however, the encapsulation efficiency decreased when the concentration of 5-FU was higher than 40 mg·ml?1.  相似文献   

4.
The current work deals with understanding the fundamental aspects of intensified recovery of lactose from paneer (cottage cheese) whey using the anti-solvent induced sonocrystallization. Ultrasonic horn (22 kHz) with varying power levels over the range of 40–120 W has been used for initial experiments at 100% duty cycle and two different levels of ultrasonic exposure time as 10 min and 20 min. Similar experiments were also performed using ultrasonic bath for the same time of exposure but with at two ultrasonic frequencies (22 kHz and 33 kHz). It was observed that the lactose recovery as well as purity increased with an increase in ultrasonic power at 100% duty cycle for the case of treatment time as 10 min whereas the lactose recovery and purity increased only till an optimum power for the 20 min treatment. In the case of ultrasonic bath, lactose purity increased with an increase in the ultrasonic frequency from 22 kHz to 33 kHz though the lactose recovery marginally decreased. Overall, it was observed that the maximum lactose recovery was ∼98% obtained using ultrasonic horn while the maximum lactose purity was ∼97%. It was also observed that maximum lactose recovery was ∼94% for the case of ultrasonic bath while the maximum lactose purity was ∼92%. The work has enabled to understand the optimized application of ultrasound so as to maximize both the lactose yield and purity during the recovery from whey.  相似文献   

5.
SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.  相似文献   

6.
本文利用多种核磁共振(NMR)技术研究了聚酰胺-胺树状大分子(PAMAM)与5-氟尿嘧啶(5-FU)在水溶液中的相互作用.1H NMR化学位移滴定结果表明5-FU分子结合在PAMAM分子表面,13C NMR化学位移滴定分析结果表明5-FU分子通过氢键或疏水间相互作用进入到PAMAM的内部疏水空腔.1H核和19F核自旋-晶格弛豫时间(T1)的测定结果也说明了二者之间存在相互作用.NOESY实验进一步验证了5-FU分子进入到PAMAM分子的内部空腔.本研究为研究树状大分子和药物小分子的相互作用提供了系统的NMR分析方法.  相似文献   

7.
We investigated the effect of ultrasound (US) and high hydrostatic pressure (HHP) on the size of reformed casein micelles (RMCs) obtained by titrating calcium and phosphorous solution into sodium caseinate solutions. Both US and HHP reduced the size of the RMCs. A decrease in size from ~200 nm to ~170 nm when US (20 kHz, 0.46 W/mL) was applied for 30 min; and down to ~85 nm when HHP was applied 500 MPa for 15 min. Electron microscopic analysis showed that the RMCs before and after US are similar to milk native casein micelles, and that HHP extensively disintegrated the RMCs. Small angle X-ray scattering and SDS-PAGE showed that the internal structure of the RMCs as well as the casein molecules are not affected by the US and HHP treatments.  相似文献   

8.
Ultrasound (US) is an emerging technology capable of affecting enzymes and microorganisms, leading to the release of amino acids and the formation of volatile compounds. The effect of different exposure times (0, 3, 6, and 9 min) of US (25 kHz, 128 W) on the proteolysis and volatile compounds of dry fermented sausages during processing (day 0 and 28) and storage (day 1 and 120) was investigated. Lower alanine, glycine, valine, leucine, proline, methionine, and tyrosine levels were observed at the beginning of manufacture for the sample subjected to 9 min of US (p < 0.05) when compared to the control. During the storage period, the samples subjected to US exposure for 3 and 6 min exhibited higher free amino acid levels. A greater formation of hexanal, pentanal, and hexanol was observed in the US-treated samples when compared to the control (p < 0.05), as well as other derivatives from the oxidation reactions during the storage. The use of US (25 kHz and 128 W) in the manufacture of dry fermented sausages can affect the proteolysis and the formation of compounds derived from lipid oxidation during the storage.  相似文献   

9.
In this study, tender coconuts were treated with high-intensity ultrasound (US) for 20 min at a frequency of 20 kHz and a power of 2400 W. Compared with control group, US treated coconut water had a higher content of total soluble solid and sugar/acid ratio along with a lower pH value and conductivity, and the contents of sucrose, fructose and glucose were also higher. Results from HS-SPME/GC–MS showed that there was no significant difference in the content of volatile compounds in coconut water before and after US treatment. The activities of sugar metabolism enzymes such as sucrose phosphate synthase, sucrose synthase, acid invertase (AI) and neutral invertase were inhibited by US, of which AI had the strongest inactivation. Circular dichroism and fluorescence spectra showed that the secondary and tertiary structure of AI molecule were destroyed with the increase of US intensity and time, which was confirmed by the change of particle size distribution pattern and scanning electron microscopy. Molecular docking and molecular dynamics showed that US treatment prevented the recognition and binding of sucrose and AI molecules, thereby inhibiting the decomposition of sucrose. In conclusion, our results indicate that US can inhibit the activity of AI and maintain the sugar content to increase the quality as well as extend the shelflife of coconut water, which will bring more commercial value.  相似文献   

10.
We measured the pattern of charging by contact electrification, following contact between a polydimethylsiloxane (PDMS) stamp and a glass substrate with gold electrodes. We used scanning Kelvin probe microscopy to map the surface potential at the same regions before and after contact, allowing a point-by-point comparison. After contact, the mean surface potential of the glass shifted by 360 mV and micron-scale heterogeneity appeared with a magnitude of ∼100 mV. The gold electrodes showed charge transfer but no discernible heterogeneity. These results show that contact electrification causes heterogeneity of surface potential even on non-polymer surfaces such as glass under ambient conditions.  相似文献   

11.
The yeast Saccharomyces cerevisiae is well known for its application in the food industry for the purpose of developing fermented food. The ultrasound (US) technology offer a wide range of applications for the food industry, including the enhancement of fermentation rates and inactivation of microbial cells. However, a better understanding and standardization of this technology is still required to ensure the scaling-up process. This study investigated the effect of the US technology on the growth of S. cerevisiae using frequencies of 20, 25, 45 and 130 kHz, treatment periods from 2 to 30 min. Furthermore, yeast kinetics subjected to US treatments were evaluated using modelling tools and scanning electron microscopy (SEM) analysis to explore the impact of sonication on yeast cells. Yeast growth was monitored after different US treatments plotting optical density (OD) at 660 nm for 24 h at 30 ⁰C. Growth curves were fitted using models of modified Gompertz and Scale-Free which showed good parameters of the fit. In particular, US frequencies of 45 and 130 kHz did not have a disruptive effect in lag phase and growth rate of the yeast populations, unlike the frequency of 20 kHz. Moreover, inactivation curves of yeast cells obtained after exposure to 20 and 25 kHz also observed the best fit using the Weibull model. US frequency of 20 kHz achieved significant reductions of 1.3 log cfu/mL in yeast concentration and also induced important cell damage on the external structures of S. cerevisiae. In conclusion, the present study demonstrated the significant effect of applying different US frequencies on the yeast growth for potential application in the food industry.  相似文献   

12.
Cancer chemotherapy suffers from drug resistance and side effects of the drugs. Combination therapies have been attracted attention to overcome these limitations of traditional cancer treatments. Recently, increasing in intracellular chemotherapeutic concentration in the presence of ultrasonic waves (US) has been shown in the preclinical stage. In addition, some recent studies have shown that nanoparticles increase the effectiveness of ultrasound therapy. In this study, the US-active property of gold nanocones (AuNCs) was utilized for combinational US and cisplatin (Cis) to overcome drug resistance. The effect of the triple combination therapy US + AuNCs + Cis with low-dose Cis on 2/3D models of cisplatin-resistant ovarian cancer cell line (A2780cis) were investigated. In the 2D cell culture, 60% of the A2780cis cell population was suppressed with triple combination therapy; and the long-term therapeutic efficacy of the US + AuNCs + Cis with the low-dose drug was demonstrated by suppressing 83% of colony formation. According to the results in the 3D cell model, 60% of the spheroid formation was suppressed by the triple combination therapy with low-dose Cis. These results not only demonstrate the success of the US + AuNCs + Cis triple combination therapy for its long-term therapeutic effect on resistant cancer cells but also verified that it might enable effective cancer therapy in vivo and clinical stages based on the 3D tumor models. In addition, enhanced anti-cancer activity was demonstrated at the low-dose Cis on drug-resistant cancer cells indicating the triple-combination therapy successfully overcame drug resistance and this is a promising strategy to reduce the side effects of chemotherapy. This work exhibits a novel US and AuNCs-mediated combination cancer therapy, which demonstrates the role of ultrasound-active AuNCs to combat drug resistance with low-dose chemotherapy.  相似文献   

13.
The effect of ultrasound (US) stimulation on the shear viscosity of aqueous polyvinyl alcohol (PVA) solution was studied when the solution was exposed to US at 23, 43, 96, and 141 kHz. The US stimulus showed a marked decrease of the shear viscosity of the solution in the order of 43 > 96 > 23 > 141 kHz, respectively, under US power dissipation of 8.5, 8.9, 8.9, and 8.8 W. Subsequently, when US exposure was stopped, the shear viscosity of PVA reverted to its original value. The US stimulation was analyzed with the US power transmitted through the PVA aqueous media. Furthermore, FT-IR spectra measured at different durations of US exposure, suggest that hydrogen bonds in the PVA segments were broken by the US exposure. We conclude that structural changes of the hydrogen bonded crosslinks of PVA were induced to include water molecules for the re-forming of crosslinks of aqueous PVA.  相似文献   

14.
Combinatory anticancer drug release from gold nanoparticles (AuNPs) in K562 human myeloid leukemia cells was performed using Raman spectroscopy. We fabricated the anticancer drug of imatinib as a BCR‐ABL tyrosine kinase inhibitor on AuNP surfaces along with a transferrin (Tf)‐targeting moiety to treat the leukemia cells. DNA topoisomerase I inhibitor topotecan was also assembled to monitor its fluorescence onto AuNPs. The linker group of 4‐carboxylic benzoic acid was used to conjugate to targeting the Tf protein. Our Raman data indicated that the drug molecules were not detached in the cell culture media but released after treatment with glutathione (2 mM). Intracellular distribution and release of the anticancer drug–AuNP conjugates in K562 cells were examined by both fluorescence microscopy and dark‐field microscopy with surface‐enhanced Raman scattering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.  相似文献   

16.
Ultrasound has potential to be used for disinfection, and its antimicrobial effectiveness can be enhanced in presence of natural compounds. In this study, we compared the antimicrobial effects of ultrasound at 20 kHz (US 20 kHz) or 1 MHz (US 1 MHz) in combination with carvacrol, citral, cinnamic acid, geraniol, gallic acid, lactic acid, or limonene against E. coli K12 and Listeria innocua at a constant power density in water. Compared to the cumulative effect of the individual treatments, the combined treatment of US 1 MHz and 10 mM citral generated >1.5 log CFU/mL additional inactivation of E. coli K12. Similarly, combined treatments of US 1 MHz and 2 mM carvacrol (30 min), US 20 kHz and 2 mM carvacrol, 10 mM citral, or 5 mM geraniol (15 min) generated >0.5–2.0 log CFU/mL additional inactivation in L. innocua. The synergistic effect of citral, as a presentative compound, and US 20 kHz treatment was determined to be a result of enhanced dispersion of insoluble citral droplets in combination with physical impact on bacterial membrane structures, whereas the inactivation by US 1 MHz was likely due to generation of oxidative stress within the bacteria. Combined ultrasound and citral treatments improved the bacterial inactivation in simulated wash water in presence of organic matter or during washing of inoculated blueberries but only additive antimicrobial effects were observed. Findings in this study will be useful to enhance fresh produce safety and shelf-life and design other alternative ultrasound based sanitation processes.  相似文献   

17.
This study employs a wire-mesh reactor (WMR) to understand the primary release and transformation of inorganic and organic sodium during fast pyrolysis of various sodium-loaded lignin samples at 300–800 °C. Due to the minimization of volatile-char interactions in WMR, the overall sodium release during lignin pyrolysis is relatively low, i.e., ∼9–11% and ∼7–14% for the inorganic and inorganic sodium loaded lignin, respectively. The presence of the inorganic sodium in the condensed volatiles (so-called oil) clearly indicates the important role of thermal ejection in the release of the inorganic sodium, since sodium salts are unlikely to evaporate under current conditions. While the release of the organic sodium into oil can be due to both thermal ejection of aerosols and evaporation of low carboxylates. Despite the low sodium release, significant transformation of the inorganic and organic sodium can take place during lignin pyrolysis. For the inorganic sodium loaded lignin, the inorganic sodium decreases continuously from ∼67% at 300 °C to ∼42% at 800 °C, accompanied by a steady increase in the organic sodium (i.e., the ion-exchangeable sodium) from ∼17% at 300 °C to ∼37% at 800 °C. While for the organic sodium loaded lignin, its transformation into the inorganic sodium is faster at higher temperatures, leading to a large increase in the inorganic sodium (i.e., carbonates) from ∼9% at 300 °C to ∼48% at 800 °C, as well as a reduction in the organic sodium from ∼79% at 300 °C to ∼28% at 800 °C. The data generated in this study will be important to understand the catalytic mechanism of sodium during thermochemical processing of alkali lignin for the production of bioenergy and biofuels.  相似文献   

18.
The use of starch based nanoparticles have gained momentum in stabilizing pickering emulsions for it’s numerous advantages. In present study resistant starch (RS) was isolated from lotus stem using enzymatic digestion and subjected to nanoprecipitation and ultrasonication to yield resistant starch nanoparticles (RSN). RSN of varying concentrations (2%, 10% and 20%) were used to stabilize the flax seed-oil water mixture to form pickering emulsions. The emulsions were used to nanoencapsulate ferulic acid (FA) – a well known bioactive via ultrasonication. The emulsions were lyophilized to form FA loaded lyophilized pickering emulsion (FA-LPE). The FA-LPE (2%, 10 % and 20%) were characterized using dynamic light scattering (DLS), light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflectance fourier transform infra-spectroscopy (ATR-FTIR). AFM showed FA-LPE as spherical droplets embedded in the matrix with maximum peak height of 8.47 nm and maximum pit height of 1.69 nm. SEM presented FA-LPE as an irregular and continuous surface having multiple folds and holes. The ATR-FTIR spectra of all the samples displayed peaks of C = C aromatic rings of FA at 1600 cm−1 and 1439 cm−1, signifying successful encapsulation. In vitro release assay displayed more controlled release of FA from FA-LPE (20%). Bioactivity of FA-LPE was evaluated in terms of anti-cancer, anti-diabetic, angiotensin converting enzyme (ACE) inhibition and prevention against oxidative damage under simulated gastro-intestinal conditions (SGID). The bioactivity of FA-LPE (20%) was significantly higher than FA-LPE (2%) and FA-LPE (10%). Key findings reveal that pickering emulsions can prevent FA under harsh SGID conditions and provide an approach to facilitate the design of pickering emulsions with high stability for nutraceutical delivery in food and supplement products.  相似文献   

19.
Gaining an in-depth understanding of the characteristics and dynamics of ultrasound (US)--generated bubbles is crucial to effectively remediate membrane fouling. The goal of present study is to conduct in-situ visualization of US-generated microbubbles in water to examine the influence of US frequency on the dynamics of microbubbles. This study utilized synchrotron in-line phase contrast imaging (In-line PCI) available at the biomedical imaging and therapy (BMIT) beamlines at the Canadian Light Source (CLS) to enhance the contrast of liquid/air interfaces at different US frequencies of 20, 28 and 40 KHz at 60 Watts. A high-speed camera was used to capture 2,000 frames per second of the bubble cavitation generated in water under the ultrasound influence. Key parameters at the polychromatic beamlines were optimized to maximize the phase contrast of gas/liquid of the microbubbles with a minimum size of 5.5 µm. ImageJ software was used to analyze the bubble characteristics and their behavior under the US exposure including the microbubble number, size, and fraction of the total area occupied by the bubbles at each US frequency. Furthermore, the bubble characteristics over the US exposure time and at different distances from the transducer were studied. The qualitative and quantitative data analyses showed that the microbubble number or size did not change over time; however, it was observed that most bubbles were created at the middle of the frames and close to the US field. The number of bubbles created under the US exposure increased with the frequency from 20 kHz to 40 kHz (about 4.6 times). However, larger bubbles were generated at 20 kHz such that the average bubble radius at 20 kHz was about 6.8 times of that at 40 kHz. Microbubble movement/traveling through water was monitored, and it was observed that the bubble velocity increased as the frequency was increased from 20 kHz to 40 kHz. The small bubbles moved faster, and the majority of them traveled upward towards the US transducer location. The growth pattern (a correlation between the mean growth ratio and the exposure time) of bubbles at 20 kHz and 60 W was obtained by tracking the oscillation of 22 representative microbubbles over the 700 ms of imaging. The mean growth ratio model was also obtained.  相似文献   

20.
When ultrasound (US) was exposed to aqueous coumarin solution in air atmosphere, the UV–visible and fluorescence spectra of the probe were measured at different US exposure times. The US exposure was carried out at 43 kHz and 500 kHz with different out-put power. It was found that the 500 kHz US produced umbelliferone fluorescence, while the 43 kHz US had no fluorescence. In addition, the coumarin absorbance at 270 nm maximum was decreased with in cases of the US exposure time. In contrary, the fluorescent intensity of umbelliferone at 460 nm increased with increasing of US exposure time. This exhibited that the coumarin probe was converted to umbelliferone by the US exposure, when the 500 kHz US was operated. This was facted that the coumarin framework was caused with addition of OH groups which was generated by the 500 kHz US. Therefore, the umbelliferone fluorescent became a probe to estimate OH radical in US medium. Furthermore, the chemo-fluorometry showed that the emission maximum of the formed umbelliferone could probe the bulk pHs in the US aqueous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号