首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Opinion, we address some of the most important results obtained electrochemically in the area of intramolecular electron transfer (ET). The focus is on freely diffusing molecular systems in which a donor D and an acceptor A are separated by a well-defined bridge B (D-B-A systems). B can be a saturated spacer, a delocalized bridge, or the more complex peptide backbones. As to the acceptors, the selected examples encompass species that can be charged reversibly but a special emphasis is on ETs associated with the concerted cleavage of a sigma bond (dissociative ETs). Our goal is to showcase the essential background, the most appropriate electrochemical tools and methodologies, and a series of selected examples where molecular electrochemistry has provided invaluable information on the mechanisms of intramolecular ET and electronic communication through bridges.  相似文献   

2.
Gasphase dissociative electron-transfer (ET) reactions are examined in the light of modern electron-transfer theory and a perturbation molecular orbital (PMO) model for ion-molecule collision rates. Two dissociative ET reactions reported by Knighton and Grimsrud—the reaction of azulene anion with dibromodifluoromethane and with carbon tetrachloride—happened in the inverted region of the relationship between reaction rate and free energy. Carbon-halogen vibration participation in dissociative ET reactions is demonstrated in two reaction series. Carbon-hydrogen stretch (3050 cm?1) activation of electron transfer happened in the most exothermic reaction series: dissociative capture to form bromide from bromotrichloromethane The reasons for the failure of classical ion-molecule collision theory to give a quantitative account of reactive ion-molecule collision rates are presented in some detail. The fundamental failure is a result of a previously unappreciated change in the polarizability of a molecule when the orbitals on the molecule overlap with those on an adjacent ion. The molecular orbital-based collision model used here avoids the need to evaluate the changes in the polarizability tensor with overlap.  相似文献   

3.
Quantum theories of elementary heterogeneous electron transfer (ET) reactions in polar media have recently been extended to reactions which proceed through active intermediate electronic surface states or bands. On the basis of this theoretical framework — which is equivalent to inelastic tunnelling processes with strong phonon coupling — experimental data for the electrochemical reduction of molecular oxygen on various carbon-supported metal phthalocyanines have been analyzed. The data are compatible with a mechanism in which at first ET from catalyst to oxygen occurs followed by ET from carbon to catalyst. Furthermore, excitation of high-frequency intramolecular modes is important.  相似文献   

4.
The present paper highlights results of a systematic study of photoinduced electron transfer, where the fundamental aspects of the photochemistry occurring in solutions and in artificially or self-assembled molecular systems are combined and compared. In photochemical electron transfer (ET) reactions in solutions the electron donor, D, and acceptor, A, have to be or to diffuse to a short distance, which requires a high concentration of quencher molecules and/or long lifetimes of the excited donor or acceptor, which cannot always be arranged. The problem can partly be avoided by linking the donor and acceptor moieties covalently by a single bond, molecular chain or chains, or rigid bridge, forming D-A dyads. The covalent combination of porphyrin or phthalocyanine donors with an efficient electron acceptor, e.g. fullerene, has a two-fold effect on the electron transfer properties. Firstly, the electronic systems of the D-A pair result in a formation of an exciplex intermediate upon excitation both in solutions and in solid phases. The formation of the exciplex accelerates the ET rate, which was found to be as fast as >10(12) s(-1). Secondly, the total reorganization energy can be as small as 0.3 eV, even in polar solvents, which allows nanosecond lifetimes for the charge separated (CS) state. Molecular assemblies can form solid heterogeneous, but organized systems, e.g. molecular layers. This results in more complex charge separation and recombination dynamics. A distinct feature of the ET in organized assemblies is intermolecular interactions, which open a possibility for a charge migration both in the acceptor and in the donor layers, after the primary intramolecular exciplex formation and charge separation in the D-A dyad. The intramolecular ET is fast (35 ps) and efficient, but the formed interlayer CS states have lifetimes in microsecond or even second time domain. This is an important result considering possible applications.  相似文献   

5.
The homogeneous and heterogeneous electron transfer (ET) reduction of ascaridole (ASC) and dihydroascaridole (DASC), two bicyclic endoperoxides, chosen as convenient models of the bridged bicyclic endoperoxides found in biologically relevant systems, were studied in aprotic media by using electrochemical methods. ET is shown to follow a concerted dissociative mechanism that leads to the distonic radical anion, which is itself reduced in a second step by an overall two-electron process. The kinetics of homogeneous ET to these endoperoxides from an extensive series of radical anion electron donors were measured as a function of the driving force of electron transfer (deltaG(o)ET). The kinetics of heterogeneous ET were also studied by convolution analysis. Together, the heterogeneous and homogeneous ET kinetic data provide the best example of the parabolic nature of the activation-driving force relationship for a concerted dissociative ET described by Savéant; the data is particularly illustrative due to the low bond-dissociation enthalpy (BDE) of the O-O bond and hence small intrinsic barriers. Analysis of the data allowed the dissociative reduction potentials (E(o)diss) to be determined as -1.2 and -1.1 Vagainst SCE for ASC and DASC, respectively. Unusually low pre-exponential factors measured in temperature-dependent kinetic studies suggest that ET to these O-O bonded systems is nonadiabatic. Analysis of ET kinetics for ASC and DASC by the Savéant model with a modification for nonadiabaticity allowed the intrinsic free energy for ET to be determined. The use of this approach and estimates for the BDE provide approximations of the reorganization energies. We suggest the methodology described herein can be used to evaluate the extent of ET to other endoperoxides of biological relevance and to provide thermochemical data not otherwise available.  相似文献   

6.
Electron transfer (ET) rates between quinone acceptors and amine donors in micellar media show Marcus inversion behavior on correlating with the free energy changes of the ET reactions. The onset of Marcus inversion in these systems is seen to be tuned by about 0.25 eV by changing the type of the micelle. The results are rationalized on the basis of two-dimensional ET theory where ET occurs along intramolecular coordinate with non-equilibrium configuration along solvation coordinate. Maximum ET rates are seen to vary by about one order of magnitude in different micelles, and are attributed to the micelle-dependent changes in the separations of the interacting quinone–amine pairs. Tunings of Marcus inversion and ET rates by changing micellar microenvironments have been observed and suggested to have useful implications in different applied areas.  相似文献   

7.
Important aspects of the electrochemical reduction of a series of substituted arene sulfenyl chlorides are investigated. A striking change is observed in the reductive cleavage mechanism as a function of the substituent on the aryl ring of the arene sulfenyl chloride. With p-substituted phenyl chlorides a "sticky" dissociative ET mechanism takes place where a concerted ET mechanism leads to the formation of a radical/anion cluster before decomposition. With o-nitropheyl sulfenyl substituted chlorides a stepwise mechanism is observed where through space S...O interactions play an important role stabilizing both the neutral molecules and their reduced forms. Disulfides are generated through a nucleophilic reaction of the two-electron reduction produced anion (arenethiolate) on the parent molecule. The dissociative electron transfer theory, as well as its extension to the case of strong in-cage interactions between the produced fragments, along with the gas phase chemical quantum calculations results helped rationalize both the observed change in the ET mechanism and the occurrence of the "sticky dissociative" ET mechanism. The radical/anion pair interactions have been determined both in solution as well as in gas phase. This study shows that despite the low magnitude of in-cage interactions in acetonitrile as compared to in the gas phase, their existence strongly affects the kinetics of the involved reactions. It also shows that, as expected, these interactions are reinforced by the existence of strong electron-withdrawing substituents.  相似文献   

8.
After the separation of the donor, the acceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of theπ-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinateR = 0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting Δmin along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus’ two- sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain the biphenylyl as the donor and both biphenylyl and naphthyl as the acceptor, have been obtained. Project supported by the National Natural Science Foundation of China (Grant Nos. 29706104 and 29573112), the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University.  相似文献   

9.
Important aspects of the electrochemical reduction of a series of substituted arene sulfonyl chlorides are investigated. An interesting autocatalytic mechanism is encountered where the starting material is reduced both at the electrode and through homogeneous electron transfer from the resulting sulfinate anion. This is due to the homogenous electron transfer from the two-electron reduction produced anion (arene sulfinate) to the parent arene sulfonyl chloride. As a result, the reduction process and hence the generated final products depend on both the concentration of the substrate and the scan rate. A change is also observed in the reductive cleavage mechanism as a function of the substituent on the phenyl ring of the arene sulfonyl chloride. With 4-cyano and 4-nitrophenyl sulfonyl chlorides a "sticky" dissociative ET mechanism takes place where a concerted ET mechanism leads to the formation of a radical/anion cluster before decomposition. With other substituents (MeO, Me, H, Cl, and F) a "classical" dissociative ET is followed, where the ET and bond cleavage are simultaneous. The dissociative electron transfer theory, as well as its extension to the case of strong in-cage interactions between the produced fragments, along with gas phase chemical quantum calculations results helped us to rationalize both the observed change in the ET mechanism and the occurrence of the "sticky" dissociative ET mechanism. The radical/anion pair interactions have been determined both in solution as well as in the gas phase. The study also shows that despite the low magnitude of in-cage interactions in acetonitrile compared to the gas phase their existence strongly affects the dynamics of the involved reactions. It also shows that, as expected, these interactions are reinforced by the existence of strong electron-withdrawing substituents. The occurrence of an autocatalytic process and the existence of the radical/anion interaction may explain the differences previously observed in the reduction of these compounds in different media.  相似文献   

10.
The purpose of this review is to examine the fundamental differences between intermolecular self-exchange vs. intramolecular ET in mixed-valence complexes based on similar triruthenium structural units. The role of orbital overlap between ancillary ligands of the electron donor and acceptor are considered in self-exchange reactions which are found to be strongly adiabatic and again in bridged mixed-valence systems. The method of infrared (IR) reflectance spectroelectrochemistry for the determination of extremely fast (1011–1013 s?1) ET rate constants is reviewed as a tool to provide quantitative information about the time scales of localization and delocalization. The role of internal vibrations of the bridging ligand in strongly delocalized mixed-valence ions is investigated by resonance Raman and IR spectroscopies. The role of solvent dipolar relaxation times in determining the rates of ultrafast intramolecular ET reactions is reviewed in the context of inorganic mixed-valence chemistry. Finally, the concept of Robin–Day Class II/III “borderline” complexes is considered, and a concise definition of the localized to delocalized transition is provided in terms of the relative contributions of external solvent and internal complex ion vibrational modes to ET.  相似文献   

11.
Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (DeltaG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-DeltaG0) of approximately 0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor--acceptor separation in the micellar ET reactions is substantially larger than for the donor--acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor--acceptor close contact suggests that there is an intervention of a surfactant chain between the interacting donor and acceptor in the micellar ET reaction.  相似文献   

12.
Electron tunneling through a square potential energy barrier is used to calculate the distance-dependent factors of electron transfer (ET) processes in metal-monolayer-metal junctions, donors and acceptors dispersed in rigid organic glasses, intramolecular ET in rigid donorbridge—acceptor species in solution and redox centers attached to electrodes through adsorbed monolayers. This tunneling model of distancedependent non-adiabatic factors is incorporated in the intersecting state model (ISM). The result is a simple semiclassical theory which is used to calculate the rates of non-adiabatic ET reactions. When the electron is originally located in a π* molecular orbital of the donor and the reaction free energy is no lower than approximately −50 kJ mol−1, no adjustable parameters are necessary to calculate the intramolecular ET rates from a donor, through a rigid bridge, to an acceptor. Such calculated rates are within an order of magnitude of the experimental values. The model can also account for the ET rates of more exothermic reactions provided that the value of an empirical parameter, which is constant for structurally related reactants and solvents of similar polarity, is estimated. The physical meaning of this parameter is related to the dynamics of the reactions. The profiles of the distance and free energy dependences of photoinduced ET rates are closely reproduced. The occurrence of distance-dependent non-adiabatic factors in intermolecular σ*-d ETs is rationalized.  相似文献   

13.
Long-distance electron transfer (ET) plays an important part in many biological processes. Also, fundamental understanding of ET processes could give grounds for designing miniaturized electronic devices. So far, experimental data on the ET mostly concern ET rates which characterize ET processes as a whole. Here, we develop a different approach which could provide more information about intrinsic characteristics of the long-range intramolecular ET. A starting point of the studies is an obvious resemblance between ET processes and electric transport through molecular wires placed between metallic contacts. Accordingly, the theory of electronic transport through molecular wires is applied to analyze characteristics of a long-range electron transfer through molecular bridges. Assuming a coherent electron tunneling to be a predominant mechanism of ET at low temperatures, it is shown that low-temperature current-voltage characteristics could exhibit a special structure, and the latter contains information concerning intrinsic features of the intramolecular ET. Using the Buttiker dephasing model within the scattering matrix formalism, we analyze the effect of dephasing on the electron transmission function and current-voltage curves.  相似文献   

14.
Type zero copper is a hard-ligand analogue of the classical type 1 or blue site in copper proteins that function as electron transfer (ET) agents in photosynthesis and other biological processes. The EPR spectroscopic features of type zero Cu(II) are very similar to those of blue copper, although lacking the deep blue color, due to the absence of thiolate ligation. We have measured the rates of intramolecular ET from the pulse radiolytically generated C3-C26 disulfide radical anion to the Cu(II) in both type zero C112D/M121L and type 2 C112D Pseudomonas aeruginosa azurins in pH 7.0 aqueous solutions between 8 and 45 °C. We also have obtained rate/temperature (10-30 °C) profiles for ET reactions between these mutants and the wild-type azurin. Analysis of the rates and activation parameters for both intramolecular and intermolecular ET reactions indicates that the type zero copper reorganization energy falls in a range (0.9-1.1 eV) slightly above that for type 1 (0.7-0.8 eV), but substantially smaller than that for type 2 (>2 eV), consistent with XAS and EXAFS data that reveal minimal type zero site reorientation during redox cycling.  相似文献   

15.
An approach for the construction of the Hamiltonians and free energy surfaces for adiabatic electrochemical reactions accompanied by a considerable reorganization of the intramolecular structure is presented. For one-electron processes it reproduces the results of Koper and Voth (Chem. Phys. Lett. 282 (1998) 100) without an a priori introduction of a switching function transforming the bonding molecular potential into an antibonding one. The present approach is extended to two-electron processes, which are of importance for the dissociative adsorption and electrocatalysis.  相似文献   

16.
Three sets of dyads, in which a zinc-porphyrin (ZP) electron donor is connected to an aromatic diimide electron acceptor,either pyromellitimide (PI) or naphthalene-1,8:4,5-tetracarboxylic acid diimide (NI), via a boronate-ester bridge, a piperidine bridge, and a 1,3-dioxolane bridge, respectively, were prepared for the purpose of control of intramolecular electron transfer (ET) by acid-base reactions at the connecting bridge. Boronate-ester bridge is a Lewis acidic site and confers a chance to regulate intramolecular ET reaction upon base coordination. This has been demonstrated by suppression of photoinduced ET from ZP to PI or NI in highly electron-pair donating solvents or upon addition of a fluoride anion. To extend this strategy to control of ET-path selectivity, we prepared triad 18, which consists of a ZP donor bearing NI and PI acceptors at similar distances through a boronate-ester bridge and an acetal bridge, respectively. Photoexcitation of 18 in a free form led to intramolecular ET from (1)()ZP preferentially to NI, but the ET path was completely switched toward PI in F(-)-coordinated form without a serious drop in the rate, constituting a novel ET-switching molecular system.  相似文献   

17.
The di-heme protein Pseudomonas stutzeri cytochrome c(4) (cyt c(4)) has emerged as a useful model for studying long-range protein electron transfer (ET). Recent experimental observations have shown a dramatically different pattern of intramolecular ET between the two heme groups in different local environments. Intramolecular ET in homogeneous solution is too slow (>10 s) to be detected but fast (ms-μs) intramolecular ET in an electrochemical environment has recently been achieved by controlling the molecular orientation of the protein assembled on a gold electrode surface. In this work we have performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial ligands in both low- and high-spin states by structure-optimized DFT. The computations enable estimating the intramolecular reorganization energy of the ET process for different combinations of low- and high-spin heme couples. Environmental reorganization free energies, work terms ("gating") and driving force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe-Fe separations. The reactivity of low- and high-spin heme groups was notably different. The ET rate is exceedingly low for the crystallographic equilibrium orientation but increases by several orders of magnitude for thermally accessible non-equilibrium configurations. Deprotonation of the propionate carboxyl group was also found to enhance the ET rate significantly. The results are discussed in relation to the observed surface immobilization effect and support the notion of conformationally gated ET.  相似文献   

18.
19.
Studies on the electron transfer (ET) interaction of 1,4-dihydroxy-9,10-anthraquinone and 6,11-dihydroxy-5,12-naphthacenequinone with aliphatic and aromatic amine (AlA and ArA, respectively) donors have been investigated in acetonitrile solutions. Steady-state (SS) measurements show quenching of the quinone fluorescence by amines, without indicating any change in the shape of the fluorescence spectra. No significant change in the absorption spectra of the quinones is also observed in the presence of the amines. For all the quinone-amine pairs, the bimolecular quenching constants (kq) estimated from SS and time-resolved measurements are found to be similar. Variation in the kq values with the oxidation potentials of the amines indicates the involvement of the ET mechanism for the quenching process. A reasonably good correlation between the kq values and the free energy changes (deltaG0) for the ET reactions following Marcus' outer-sphere ET theory also supports this mechanism. It is seen that for both the quinone-ArA and quinone-AlA systems, the kq values initially increase and then get saturated at some diffusion-controlled limiting values (kqDC) as deltaG0 values gradually become more negative. Interestingly, however, it is seen that the kqDC value for the quinone-AlA systems is substantially lower than that for quinone-ArA systems. Such a large difference in the kqDC values between quinone-AlA and quinone-ArA systems is quite unusual. Present results have been rationalized based on the assumption that an orientational restriction is imposed for the encounter complexes in quinone-AlA systems to undergo ET reactions, which arises because of the localized (at amino nitrogen) shapes of the highest-occupied molecular orbitals (HOMO) of AlA in comparison to the pi-like HOMO of the ArA.  相似文献   

20.
To study the relationship between rate and driving force of intramolecular dissociative electron transfers, a series of donor-spacer-acceptor (D-Sp-A) systems has been devised and synthesized. cis-1,4-Cyclohexanedyil and a perester functional group were kept constant as the spacer and acceptor, respectively. By changing the aryl substituents of the phthalimide moiety, which served as the donor, the driving force could be varied by 0.74 eV. X-ray diffraction crystallography and ab initio conformational calculations pointed to D-Sp-A molecules having the cis-(cyclohexane) equatorial(phthalimido)-axial(perester) conformation and the same D/A orientation. The intramolecular dissociative electron-transfer process was studied by electrochemical means in N,N-dimethylformamide, in comparison with thermodynamic and kinetic information obtained with models of the acceptor and the donor. The intramolecular process consists of the electron transfer from the electrochemically generated phthalimide-moiety radical anion to the peroxide functional group. The electrochemical analysis provided clear evidence of a concerted dissociative electron-transfer mechanism, leading to the cleavage of the O-O bond. Support for this mechanism was obtained by ab initio MO calculations, which provided information about the LUMO of the acceptor and the SOMO of the donor. The intramolecular rate constants were determined and compared with the corresponding intermolecular values, the latter data being obtained by using the model molecules. As long as the effective location of the centroid of the donor SOMO does not vary significantly by changing the aryl substituent(s), the intramolecular dissociative electron transfer obeys the same main rules already highlighted for the corresponding intermolecular process. On the other hand, introduction of a nitro group drags the SOMO away from the acceptor, and consequently, the intramolecular rate drops by as much as 1.6 orders of magnitude from the expected value. Therefore, a larger solvent reorganization than for intermolecular electron transfers and the effective D/A distance and thus electronic coupling must be taken into account for quantitative predictions of intramolecular rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号