首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A series of asymmetrically disubstituted models of the active site of [FeFe]-hydrogenase, (mu-pdt)[Fe(CO) 2PMe 3][Fe(CO) 2NHC] (pdt = 1,3-propanedithiolate, NHC = IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene IMes ( 1), IMesMe, 1-methyl,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene ( 2) or IMe, 1,3-bis(methyl)imidazol-2-ylidene ( 3)), have been synthesized and characterized. The one-electron oxidation of these complexes to generate mixed valent models of the H ox state of [FeFe]-hydrogenase, such as the previously reported (mu-pdt)(mu-CO)[Fe(CO) 2PMe 3][Fe(CO)IMes] (+) ( 1 ox ) (Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008-7009) has been examined to explore the steric and electronic effects of different N-atom substituents on the stability and structure of the mixed valent cations. The differences in spectroscopic properties, structures, and relative stabilities of 1 ox , (mu-pdt)[Fe(CO) 2PMe 3][Fe(CO) 2IMesMe] (+) ( 2 ox ), and (mu-pdt)[Fe(CO) 2PMe 3]-[Fe(CO) 2IMe] (+) ( 3 ox ) are discussed in the context of both experimental and theoretical data. Of the three derivatives, only that with greatest steric bulk on the NHC ligand, 1 ox , shows a clear indication of a mu-CO by solution nu(CO) IR and yields to crystallization as a rotated form, commensurate with the two-Fe subsite of H ox. In addition, the reactivity of the complexes with extrinsic CO to form CO adducts and/or exchange with (13)CO is explored by experiment and by using density-functional theory calculations.  相似文献   

2.
采用密度泛函方法研究了Fe(100)表面Cu单层膜上CO的吸附,直接解离,氢助解离以及C-C偶合反应.相比洁净的Fe(100)表面,在Fe(100)的单层Cu膜上,CO的吸附和活化都减弱了.特别是,相比Fe(100)上CO的解离能垒1.08 eV,铜单层膜上CO解离能垒高达2.4 eV.在H原子共吸附的情况下,Fe(1...  相似文献   

3.
Large basis CCSD(T) calculations are used to calculate the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. . The relative energy of the excited singlet state of Fe(CO)4 with respect to the ground triplet state is not known experimentally, and various lower levels of theory predict very different results. Upon extrapolating to the infinite basis set limit, and including corrections for core-core and core-valence correlation, scalar relativity, and multi-reference character of the wavefunction, the best CCSD(T) estimate for the spin-state splitting in iron tetracarbonyl is 2 kcal mol(-1). Calculation of the dissociation energy of 1Fe(CO)4(L) into singlet fragments, taken together with known experimental behaviour of triplet Fe(CO)4, provides independent evidence for the fact that the spin-state splitting is smaller than 3 kcal mol(-1). These calculations highlight some of the challenges involved in benchmark calculations on transition metal containing systems.  相似文献   

4.
A new group of CO-releasing molecules, CO-RMs, based on cyclopentadienyl iron carbonyls have been identified. X-Ray structures have been determined for [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)X], X = Cl, Br, I, NO(3), CO(2)Me, [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)](2), [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(2)](2) and [(eta-C(5)H(4)CO(2)Me)Fe(CO)(3)][FeCl(4)]. Half-lives for CO release, (1)H, (13)C, and (17)OC NMR and IR spectra have been determined along with some biological data for these compounds, [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(3)](+) and [[eta-C(5)H(4)(CH(2))(n)CO(2)Me]Fe(CO)(3)](+), n = 1, 2. More specifically, cytotoxicity assays and inhibition of nitrite formation in stimulated RAW264.7 macrophages are reported for most of the compounds analyzed. [(eta-C(5)H(5))Fe(CO)(2)X], X = Cl, Br, I, were also examined for comparison. Correlations between the half-lives for CO release and spectroscopic parameters are found within each group of compounds, but not between the groups.  相似文献   

5.
This report describes routes to iron dithiolato carbonyls that do not require preformed iron carbonyls. The reaction of FeCl 2, Zn, and Q 2S 2C n H 2 n (Q (+) = Na (+), Et 3NH (+)) under an atmosphere of CO affords Fe 2(S 2C n H 2 n )(CO) 6 ( n = 2, 3) in yields >70%. The method was employed to prepare Fe 2(S 2C 2H 4)( (13)CO) 6. Treatment of these carbonylated mixtures with tertiary phosphines, instead of Zn, gave the ferrous species Fe 3(S 2C 3H 6) 3(CO) 4(PR 3) 2, for R = Et, Bu, and Ph. Like the related complex Fe 3(SPh) 6(CO) 6, these compounds consist of a linear arrangement of three conjoined face-shared octahedral centers. Omitting the phosphine but with an excess of dithiolate, we obtained the related mixed-valence triiron species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (-). The highly reducing all-ferrous species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (2-) is implicated as an intermediate in this transformation. Reactive forms of iron, prepared by the method of Rieke, also combined with dithiols under a CO atmosphere to give Fe 2(S 2C n H 2 n )(CO) 6 in modest yields under mild conditions. Studies on the order of addition indicate that ferrous thiolates are formed prior to the onset of carbonylation. Crystallographic characterization demonstrated that the complexes Fe 3(S 2C 3H 6) 3(CO) 4(PEt 3) 2 and PBnPh 3[Fe 3(S 2C 3H 6) 4(CO) 4] feature high-spin ferrous and low-spin ferric as the central metal, respectively.  相似文献   

6.
[Cp((CO)2Fe(PPh2H)]PF6 reacts with NaBH4 to give the intermediates CpFe(CO)2H and PPh2H, which are then converted into Cp(CO)(H)Fe(PPh2H). [Cp(CO)2FeL]PF6 (L = P(OMe)3, P(OEt)3 and P(OiPr)3) reacts with NaBH4 to give the product Cp(CO)(H)FeL directly without Cp(CO)2FeH and L even being formed transiently. The proposed reaction mechanism is that H attacks th phosphorus atom to give a metallaphosphorane complex, followed by coupling between a Cp(CO)2Fe fragment and H on the hypervalent phosphorus.  相似文献   

7.
Alkoxy bases such as t-BuOK react with Fe(CO)(5) to give reactive iron carbonyl intermediates that in turn react with alkynes at 70 °C in THF to give 1,2-cyclobutenediones in 70-93% yields after CuCl(2)·2H(2)O oxidation. A novel 1,2-diacyloxyferrole derivative was isolated in the reaction of diphenylacetylene with Fe(CO)(5)/t-BuOK in the presence of acetyl chloride in contrast to the formation of a 1,4-diacyloxyferrole complex formed in the reaction using Fe(CO)(5)/Me(3)NO. The Fe(2)(CO)(9)/t-BuOK reagent system also converts the alkynes to corresponding cyclobutenediones in 63-90% yields under similar reaction conditions.  相似文献   

8.
A series of models for the active site (H-cluster) of the iron-only hydrogenase enzymes (Fe-only H2-ases) were prepared. Treatment of MeCN solutions of Fe2(SR)2(CO)6 with 2 equiv of Et4NCN gave [Fe2(SR)2(CN)2(CO)4](2-) compounds. IR spectra of the dicyanides feature four nu(CO) bands between 1965 and 1870 cm(-1) and two nu(CN) bands at 2077 and 2033 cm(-1). For alkyl derivatives, both diequatorial and axial-equatorial isomers were observed by NMR analysis. Also prepared were a series of dithiolate derivatives (Et4N)2[Fe2(SR)2(CN)2(CO)4], where (SR)2 = S(CH2)2S, S(CH2)3S. Reaction of Et4NCN with Fe2(S-t-Bu)2(CO)6 gave initially [Fe2(S-t-Bu)2(CN)2(CO)4](2-), which comproportionated to give [Fe2(S-t-Bu)2(CN)(CO)5](-). The mechanism of the CN(-)-for-CO substitution was probed as follows: (i) excess CN(-) with a 1:1 mixture of Fe2(SMe)2(CO)6 and Fe2(SC6H4Me)2(CO)6 gave no mixed thiolates, (ii) treatment of Fe2(S2C3H6)(CO)6 with Me3NO followed by Et4NCN gave (Et4N)[Fe2(S2C3H6)(CN)(CO)5], which is a well-behaved salt, (iii) treatment of Fe2(S2C3H6)(CO)6 with Et4NCN in the presence of excess PMe3 gave (Et4N)[Fe2(S2C3H6)(CN)(CO)4(PMe3)] much more rapidly than the reaction of PMe3 with (Et4N)[Fe2(S2C3H6)(CN)(CO)5], and (iv) a competition experiment showed that Et4NCN reacts with Fe2(S2C3H6)(CO)6 more rapidly than with (Et4N)[Fe2(S2C3H6)(CN)(CO)5]. Salts of [Fe2(SR)2(CN)2(CO)4](2-) (for (SR)2 = (SMe)2 and S2C2H4) and the monocyanides [Fe2(S2C3H6)(CN)(CO)5](-) and [Fe2(S-t-Bu)2(CN)(CO)5](-) were characterized crystallographically; in each case, the Fe-CO distances were approximately 10% shorter than the Fe-CN distances. The oxidation potentials for Fe2(S2C3H6)(CO)4L2 become milder for L = CO, followed by MeNC, PMe3, and CN(-); the range is approximately 1.3 V. In water,oxidation of [Fe2(S2C3H6)(CN)2(CO)4](2-) occurs irreversibly at -0.12 V (Ag/AgCl) and is coupled to a second oxidation.  相似文献   

9.
Ab initio calculations using the GAMESS program package in the atomic basis TZV (Fe: (14s, 11p, 6d)/[10s, 8p, 3d]; C, O: (11s, 6p)/[5s, 3p]) were performed with account taken of the correlation with the second-order Möller–Plesset (MP2) perturbation theory to predict a new conformer Fe(CO)4 (with D 4h symmetry). This conformer has a square planar configuration in the ground singlet electronic state and is a mild electrophile produced by dissociation of Fe(CO)5 along the axial Fe–C bond. The process of nucleation of iron nanoparticles Fe(CO)5 + Fe(CO)4 Fe2(CO)9 is supposed to occur in two stages. The first stage is an orbital-controlled reaction which should be monitored as an increase in medium polarity and temperature. It should proceed with participation of only one of the stable conformers of the nucleophile Fe(CO)5, namely, a mild conformer with square-pyramidal structure (C 4v ) rather than a hard but energetically more advantageous conformer with trigonal–bipyramidal structure (D 3h ). The structure of a prereaction complex was discussed.  相似文献   

10.
The photochemistry of Fe(CO)5 (5) has been studied in heptane, supercritical (sc) Ar, scXe, and scCH4 using time-resolved infrared spectroscopy (TRIR). 3Fe(CO)4 ((3)4) and Fe(CO)3(solvent) (3) are formed as primary photoproducts within the first few picoseconds. Complex 3 is formed via a single-photon process. In heptane, scCH4, and scXe, (3)4 decays to form (1)4 x L (L = heptane, CH4, or Xe) as well as reacting with 5 to form Fe2(CO)9. In heptane, 3 reacts with CO to form (1)4 x L. The conversion of (3)4 to (1)4 x L has been monitored directly for the first time (L = heptane, kobs = 7.8(+/- 0.3) x 10(7) s(-1); scCH4, 5(+/- 1) x 10(6) s(-1); scXe, 2.1(+/- 0.1) x 10(7) s(-1)). In scAr, (3)4 and 3 react with CO to form 5 and (3)4, respectively. We have determined the rate constant (kCO = 1.2 x 10(7) dm3 mol(-1) s(-1)) for the reaction of (3)4 with CO in scAr, and this is very similar to the value obtained previously in the gas phase. Doping the scAr with either Xe or CH4 resulted in (3)4 reacting with Xe or CH4 to form (1)4 x Xe or (1)4 x CH4. The relative yield, [(3)4]:[3] decreases in the order heptane > scXe > scCH4 > scAr, and pressure-dependent measurements in scAr and scCH4 indicate an influence of the solvent density on this ratio.  相似文献   

11.
Density functional theory calculations have been carried out on the CO/H2 coadsorption on the (001), (110), and (100) surfaces of Fe5C2 for the understanding of the Fischer-Tropsch synthesis (FTS) mechanism. The stable surface species changes with the variation of the H2 and CO coverage. Along with dissociated hydrogen and adsorbed CO in 2-, 3-, and 4-fold configurations, methylidyne (C(s)H) (C(s), surface carbon), ketenylidene (C(s)CO), ketenyl (C(s)HCO), ketene (C(s)H2CO), and carbon suboxide (C(s)C2O2) are computed as thermodynamically stable surface species on Fe5C2(001) and Fe5C2(110) containing both surface iron and carbon atoms. These surface carbon species can be considered as the preliminary stages for FTS. On Fe5C2(100) with only iron atoms on the surface layer, the stable surface species is dissociated hydrogen and CO with top and 2-fold configurations. The bonding nature of these adsorbed carbon species has been analyzed.  相似文献   

12.
(Na[Fe(CO)2C5H5]2)n的形成和反应特性的研究   总被引:1,自引:1,他引:0  
King[1]认为,双环戊二烯基二羰基铁[Fe(CO)2C5H5]2与钠汞齐(Na/Hg)作用可直接得到环戊二烯基二羰基铁钠Na[Fe(CO)2C5H5].但我们在研究合成异核金属配合物过程中,按文献[1]所述方法制得的环戊二烯基二羰基铁钠,分别与主族金属元素锡的配合物L3SnCl (L=C6H11,C6H5)和过渡金属稀土元素的配合物(C5Me5)2 LnCl(Ln=Dy,Gd,Sm,Nd,Pr) 在相同反应条件下作用,却得到了金属间具有完全不同成键形式的两类异核金属配合物.为此,我们对[Fe(CO)2C5H5]2与钠汞齐(Na/Hg)反应产物的结构形式和其在异核金属配合物合成中的反应特性进行了初步研究.  相似文献   

13.
An Fe(II) carbonyl complex [(PaPy3)Fe(CO)](ClO4) (1) of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H, H is the dissociable amide proton) has been synthesized and structurally characterized. This Fe(II) carbonyl exhibits its nu(CO) at 1972 cm(-1), and its 1H NMR spectrum in degassed CD3CN confirms its S = 0 ground state. The bound CO in 1 is not photolabile. Reaction of 1 with an equimolar amount of NO results in the formation of the {Fe-NO}7 nitrosyl [(PaPy3)Fe(NO)](ClO4) (2), while excess NO affords the iron(III) nitro complex [(PaPy3)Fe(NO2)](ClO4) (5). In the presence of [Fe(Cp)2]+ and excess NO, 1 forms the {Fe-NO}6 nitrosyl [(PaPy3)Fe(NO)](ClO4)2 (3). Complex 1 also reacts with dioxygen to afford the iron(III) mu-oxo species [{(PaPy3)Fe}2O](ClO4)2 (4). Comparison of the metric and spectral parameters of 1 with those of the previously reported {Fe-NO}6,7 nitrosyls 3 and 2 provides insight into the electronic distributions in the Fe(II)-CO, Fe(II)-NO, and Fe(II)-NO+ bonds in the isostructural series of complexes 1-3 derived from a non-heme polypyridine ligand with one carboxamide group.  相似文献   

14.
The 1H and 13C NMR spectra of the heterobimetallic compound (CO)4Fe(μ-AsMe2)Mo(CO)2(C5H5) reveal three different fluxional processes.  相似文献   

15.
宋礼成  刘容刚  王积涛 《化学学报》1987,45(12):1188-1191
研究了(μ-RS)(μ-XMgS)Fe2(CO)6与π-环戊二烯二羰基碘化铁的反应.首次制得(μ-RS)[(μ-CpFe(CO)2S]Fe2(CO)6的一系列含有机铁硫桥的非对称配合物.它们的核磁氢谱表明每个络合物只是以一类构象体存在.它们的甲基络合物的单晶结构分析证实了这一结论.  相似文献   

16.
The reagent [arachno-4-CB8H14] reacts with [Fe3(CO)12] in tetrahydrofuran (THF) at reflux temperatures, followed by addition of [N(PPh3)2]Cl, to afford [N(PPh3)2][4,9-{Fe(CO)4}-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (3). In the anion of 3, one iron atom is part of the open CBBFeBB face of a 10-vertex {arachno-9,6-FeCB8} cage, to which the second iron atom is attached via an Fe-Fe bond and an additional exo-polyhedral Fe-B sigma bond. Upon heating 3 in refluxing toluene, the closed 10-vertex species [N(PPh3)2][2,2,2-(CO)3-closo-2,1-FeCB8H9] (4) is obtained, whereas the isomeric compound [N(PPh3)2][6,6,6-(CO)3-closo-6,1-FeCB8H9] (5) is isolated upon heating [closo-4-CB8H9]- and [Fe3(CO)12] in refluxing THF with subsequent addition of [N(PPh3)2]Cl. Protonation of 3 using CF3SO3H in CH2Cl2 gives the charge-compensated compound [4,9-{Fe(CO)4}-4-(mu-H)-9,9,9-(CO)3-arachno-9,6-FeCB8H11] (6), in which the B-Fe sigma bond of the precursor has been converted to a B-H right harpoon-up Fe linkage. In contrast, 3 with {M(PPh3)}+ gives the trimetallic species [1,3,4,9-{MFe(CO)4(PPh3)}-1,3-(mu-H)2-9,9,9-(CO)3-arachno-9,6-FeCB8H9] (M = Cu (7), Ag 8) in which the three metal centers form a V-shaped M-Fe-Fe unit. Compound 6 reacts with PEt3 in the presence of Me(3)NO to yield [4,9-(PEt3)2-9,9-(CO)2-nido-9,6-FeCB8H10] (9). In the latter, the formerly exo-polyhedral {Fe(CO)4} fragment has been replaced by a PEt3 ligand, with a second PEt3 substituting one CO group at the remaining cluster iron vertex. The novel structural features of compounds 3-9 have been confirmed by single-crystal X-ray diffraction studies.  相似文献   

17.
[Fe(L-cysteinate)(2)(CO)(2)](2-) is a CO releasing molecule which has low cytotoxicity to RAW264.7 macrophages. It provides an example of CO binding using ligands available to ion channels which use CO as a signalling molecule in the absence of heme. Previous work has shown that this compound consists of five isomers and it was proposed that the two isomers with trans-dicarbonyls are dominant. In this work the isomers are re-assigned and shown to be capable of releasing CO, albeit too slowly to act as a signalling receptor. It is shown that by linking the two L-cysteines together to form [Fe(SCH(2)CH{CO(2)H}NHCH(2))(2)(CO)(2)], only one isomer is isolated.  相似文献   

18.
Attempts to prepare Fe(CO)5+ from Ag[Al(ORF)4] (RF=C(CF3)3) and Fe(CO)5 in CH2Cl2 yielded the first complex of a neutral metal carbonyl bound to a simple metal cation. The Ag[Fe(CO)5]2+ cation consists of two Fe(CO)5 molecules coordinating Ag+ in an almost linear fashion. The ν(CO) modes are blue‐shifted compared to Fe(CO)5, with one band above 2143 cm?1 indicating that back‐bonding is heavily decreased in the Ag[Fe(CO)5]2+ cation.  相似文献   

19.
Wang N  Wang M  Liu T  Li P  Zhang T  Darensbourg MY  Sun L 《Inorganic chemistry》2008,47(15):6948-6955
Selective synthetic routes to isomeric diiron dithiolate complexes containing the (EtO) 2PN(Me)P(OEt) 2 (PNP) ligand in an unsymmetrical chelating role, for example, (mu-pdt)[Fe(CO) 3][Fe(CO)(kappa (2)-PNP)] ( 3) and as a symmetrically bridging ligand in (mu-pdt)(mu-PNP)[Fe(CO) 2] 2 ( 4), have been developed. 3 was converted to 4 in 75% yield after extensive reflux in toluene. The reactions of 3 with PMe 3 and P(OEt) 3 afforded bis-monodentate P-donor complexes (mu-pdt)[Fe(CO) 2PR 3][Fe(CO) 2(PNP)] (PR 3 = PMe 3, 5; P(OEt) 3, 7), respectively, which are formed via an associative PMe 3 coordination reaction followed by an intramolecular CO-migration process from the Fe(CO) 3 to the Fe(CO)(PNP) unit with concomitant opening of the Fe-PNP chelate ring. The PNP-monodentate complexes 5 and 7 were converted to a trisubstituted diiron complex (mu-pdt)(mu-PNP)[Fe(CO)PR 3][Fe(CO) 2] (PR 3 = PMe 3, 6; P(OEt) 3, 8) on release of 1 equiv CO when refluxing in toluene. Variable-temperature (31)P NMR spectra show that trisubstituted diiron complexes each exist as two configuration isomers in solution. All diiron dithiolate complexes obtained were characterized by MS, IR, NMR spectroscopy, elemental analysis, and X-ray diffraction studies.  相似文献   

20.
The reaction of [(Cp*Ta)(2)B(4)H(9)(μ-BH(4))] (1; Cp* = η(5)-C(5)Me(5)) with [Fe(2)(CO)(9)] in hexane yielded [(Cp*Ta)(2)B(5)H(7){Fe(CO)(3)}(2)] (2) and [(Cp*Ta)(2)B(5)H(9){Fe(CO)(3)}(4)] (3) in moderate yield. Cluster 2 represents the first example of a bicapped pentagonal-bipyramidal metallaborane with a deformed equatorial plane, and 3 can be described as a fused cluster in which two pentagonal-bipyramidal units are fused through a common 3-vertex triangular face. Compounds 2 and 3 have been characterized by mass spectrometry and IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号