首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this paper, a three-dimensional (3D) finite-difference lattice Boltzmann model for simulating compressible flows with shock waves is developed in the framework of the double-distribution-function approach. In the model, a density distribution function is adopted to model the flow field, while a total energy distribution function is adopted to model the temperature field. The discrete equilibrium density and total energy distribution functions are derived from the Hermite expansions of the continuous equilibrium distribution functions. The discrete velocity set is obtained by choosing the abscissae of a suitable Gauss–Hermite quadrature with sufficient accuracy. In order to capture the shock waves in compressible flows and improve the numerical accuracy and stability, an implicit–explicit finite-difference numerical technique based on the total variation diminishing flux limitation is introduced to solve the discrete kinetic equations. The model is tested by numerical simulations of some typical compressible flows with shock waves ranging from 1D to 3D. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.  相似文献   

2.
Continuous scanning, laser imaging velocimetry   总被引:1,自引:0,他引:1  
Careful exploitation of the anisotropy native to late time stratified and rotating flows permits the use of a laser scanning measurement technique to simultaneously resolve the 2D velocity field in O(100) slices. The technique relies on getting the Reynolds number from the length scale while keeping the velocity small, this provides a characteristic time scale that is sufficiently large to permit full 3D scanning through the measurement volume in a relatively short time. As the vertical velocity component of these late time stratified flows is effectively zero, all components of the deformation tensor are resolved. 3D, time resolved measurements of the vorticity and enstrophy fields associated with stratified rotating flows such as vortex dipoles, monopoles and wakes are presented.  相似文献   

3.
It is well known that the lattice Boltzmann equation method (LBE) can model the incompressible Navier-Stokes (NS) equations in the limit where density goes to a constant. In a LBE simulation, however, the density cannot be constant because pressure is equal to density times the square of sound speed, hence a compressibility error seems inevitable for the LBE to model incompressible flows. This work uses a modified equilibrium distribution and a modified velocity to construct an LBE which models time-independent (steady) incompressible flows with significantly reduced compressibility error. Computational results in 2D cavity flow and in a 2D flow with an exact solution are reported.  相似文献   

4.
The spray cone emerging during an extended metal atomization process (called spray forming) has been investigated in order to quantify the influence of highly concentrated multiphase flows on phase‐Doppler‐anemometry (PDA) measurements. Using this non‐intrusive, optical measurement technique not only the local particle size and velocity distributions of the spray can be obtained but also additional information about the mass flux in the multiphase flow. Since standard phase‐Doppler systems can be easily applied to low concentrated particle systems (spherical particles with smooth surfaces and an optical transparent continuous phase taken for granted) the application of this measurement technique to highly concentrated multiphase flows is more complex. Both the laser light propagating from the PDA device to the probe volume and the scattered one going backward to the PDA receiving system are disturbed by passing the highly concentrated multiphase flow. The resulting significant loss in signal quality especially concerns the measurement of the smaller particles of the spray because of their reduced silhouette (in comparison with the bigger ones). Thus, the detection of the smallest particles becomes partially impossible leading to measurement of a distorted diameter distribution of the entire particle collective. In this study the distortions of the measured distributions dependent on the particle number concentration as well as on the path length of the laser light are discussed.  相似文献   

5.
Holography is capable of three-dimensional (3D) representation of spatial objects such as fluid interfaces and particle ensembles. Based on this, we adapt it into a 3D flow visualization tool called Holographic Flow Visualization (HFV). This technique provides a novel means of studying spatially and temporally evolving complex fluid flow structures marked by a disperse phase or interfaces of different fluids. This paper demonstrates that HFV is a straightforward technique, especially when the In-line Recording Off-axis Viewing (IROV) configuration is used. The technique can be applied either as a stand-alone experimental tool for studying scalar-based coherent structures, flow instabilities, interactions of different fluids driven by fluid dynamics, interfacial phenomena, or as a precursor to volumetric 3D velocity vector field measurement of complex transient flow dynamics. Experimental results in several complex fluid flows and flames demonstrate the effectiveness of HFV. Different methods are used to mark flow structures undergoing different instabilities: 1) a vortex ring grown out of a drop of polymer suspension falling in water, 2) cascade of a bag-shaped drop of milk in water, and 3) internal flow structures of a jet diffusion flame.  相似文献   

6.
The need of developing advanced micro-electro-mechanical systems (MEMS) has motivated the study of fluid-thermal flows in devices with micro-scale geometries. In many MEMS applications the Knudsen number varies in the range from 10−2 to 102. This flow regime can be treated neither as a continuum nor as a free molecular flow. In order to describe these flows it is necessary to implement the Boltzmann equation (BE) or simplified kinetic model equations.The aim of the present work is to propose an efficient methodology for solving internal flows of binary gaseous mixtures in rectangular channels due to small pressure gradients over the whole range of the Knudsen number. The complicated collision integral term of the BE is substituted by the kinetic model proposed by McCormack for gaseous mixtures. The discrete velocity method is implemented to solve in an iterative manner the system of the kinetic equations. Even more the required computational effort is significantly reduced, by accelerating the convergence rate of the iteration scheme. This is achieved by formulating a set of moment equations, which are solved jointly with the transport equations.The velocity profiles and the flow rates of three different binary mixtures (He–Ar, Ne–Ar and He–Xe) in 2D micro-channels of various height to width ratios are calculated. The whole formulation becomes very efficient and can be implemented as an alternative methodology to the classical method of solving the Navier–Stokes equations with slip boundary conditions, which in any case is restricted by the hydrodynamic regime.  相似文献   

7.
Doppler Global Velocimetry (DGV) is a whole-field measurement technique which has attracted significant interest from the fluid-flow research community since its introduction in 1991. Practical implementations of the methodology have focused on two principal laser light sources: the argon ion laser, applied to steady state or slowly varying flows; and the pulsed neodymium YAG laser for the measurement of instantaneous velocity fields. However, the emphasis in the published literature has been very much on research using the argon laser. This paper reports the application of a Q-switched, injection-seeded neodymium YAG laser to the proven Oxford DGV system, and the use of this combination in a short duration unsteady high-speed flow. The pertinent characteristics of the apparatus are described, and the impact of these on the integrity of the resulting velocity measurements is presented. Adaptations to the commercial laser system that make it suitable for application to the measurement of transient high-speed flows are described. Finally, the application of this system to a short duration unsteady flow is described. This application is based on the flow found in a new type of transdermal drug delivery device, where particles of the drug material are projected at high speed through the skin. Whole-field velocities are recorded, and values as high as 800 m/s are evident.  相似文献   

8.
Choi YS  Lee SJ 《Optics letters》2011,36(21):4167-4169
Digital in-line holographic microscopy has a strong potential in measuring various three-dimensional (3D) microscale flow phenomena. However, the axial elongation problem in reconstructing particles severely degrades the measurement accuracy along the light propagation direction. In this Letter, we utilize the lenslike characteristic of tens of micrometers size transparent spherical particles to extract their 3D position. A sharp intensity peak is observed in the reconstructed wave field, resulting from the light-focusing effect of the particle. As a result, the depth-of-focus constraint caused by the particle size is eliminated and the measurement accuracy is drastically improved up to submicrometer resolution.  相似文献   

9.
李志辉  彭傲平  方方  李四新  张顺玉 《物理学报》2015,64(22):224703-224703
如何准确可靠地模拟从外层空间高稀薄流到近地面连续流的航天器高超声速绕流环境与复杂流动变化机理是流体物理的前沿基础科学问题. 基于对Boltzmann方程碰撞积分的物理分析与可计算建模, 确立了可描述自由分子流到连续流区各流域不同马赫数复杂流动输运现象统一的Boltzmann模型速度分布函数方程, 发展了适于高、低不同马赫数绕流问题的离散速度坐标法和直接求解分子速度分布函数演化更新的气体动理论数值格式, 建立了模拟复杂飞行器跨流域高超声速飞行热环境绕流问题的气体动理论统一算法. 对稀薄流到连续流不同Knudsen数0.002 ≤Kn ≤1.618、不同马赫数下可重复使用卫星体再入过程(110–70 km)中高超声速绕流问题进行算法验证分析, 计算结果与典型文献的Monte Carlo直接模拟值及相关理论分析符合得较好. 研究揭示了飞行器跨流域不同高度高超声速复杂流动机理、绕流现象与气动力/热变化规律, 提出了一个通过数值求解介观Boltzmann模型方程, 可靠模拟高稀薄自由分子流到连续流跨流域高超声速气动力/热绕流特性统一算法.  相似文献   

10.
The paper describes an experimental technique based on the use of a Vic-3D contactless digital optical system and digital image correlation for research in the mechanical behavior of a solid and its plastic deformation with space-time inhomogeneities. Using this technique, we analyze the evolution of inhomogeneous strain and local strain rate fields in AMg2m alloy at constant uniaxial tension rates. The analysis reveals quasi-periodic strain field homogenization in jerky flow: alternating phases of active local plastic flow (shear banding) and macroscale strain levelling. Also analyzed are the parameters of localized microscale plastic flow such as the height and width of shear bands, their velocity, and coefficient of plastic strain inhomogeneity. From a series of mechanical tests, the influence of the specimen geometry and loading rate on these parameters is estimated.  相似文献   

11.
The possibility of using commercial PIV equipment combined with schlieren optics to measure the velocity fields of turbulent flows is explored. Given a sufficiently high Reynolds number and adequate refractive flow differences, turbulent eddies can serve as the PIV “particles” in a schlieren image or shadowgram. The PIV software analyzes motion between consecutive schlieren or shadowgraph frames to obtain velocity fields. Velocimetry examples of an axisymmetric sonic helium jet in air and a 2D turbulent boundary layer at Mach 3 are shown. Due to optical path integration, axisymmetric flows require the inverse Abel transform to extract center-plane velocity data. Conditions for optimum schlieren sensitivity are examined. In its present embodiment, “schlieren PIV” is not useful for laminar flows nor for fully 3D flows. Otherwise it functions much like standard PIV under conditions where individual particles are not resolved and velocimetry is instead based on correlation of the motion of turbulent structures. “Schlieren PIV” shows significant promise for general refractive turbulent flow velocimetry if its integrative nature can be overcome through sharp-focusing optics.  相似文献   

12.
In this paper a digital in-line holographic recording and reconstruction system was set up and used in the particle image velocimetry for the 3Dt-3c (the three-component (3c), velocity vector field measurements in a three-dimensional (3D), space field with time history (t)) flow measurements that made up of the new full-flow field experimental technique—digital holographic particle image velocimetry (DHPIV). The traditional holographic film was replaced by a CCD chip that records instantaneously the interference fringes directly without the darkroom processing, and the virtual image slices in different positions were reconstructed by computation using Fresnel–Kirchhoff integral method from the digital holographic image. Also a complex field signal filter (analyzing image calculated by its intensity and phase from real and image parts in fast fourier transform (FFT)) was applied in image reconstruction to achieve the thin focus depth of image field that has a strong effect with the vertical velocity component resolution. Using the frame-straddle CCD device techniques, the 3c velocity vector was computed by 3D cross-correlation through space interrogation block matching through the reconstructed image slices with the digital complex field signal filter. Then the 3D-3c-velocity field (about 20 000 vectors), 3D-streamline and 3D-vorticiry fields, and the time evolution movies (30 field/s) for the 3Dt-3c flows were displayed by the experimental measurement using this DHPIV method and techniques.  相似文献   

13.
The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in the whole volume (global) of interest. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various three-dimensional, bubbly two-phase flow situations. This information is useful for developing or improving existing computer constitutive models that simulate this type of flow field. It is also useful for understanding the detailed structure of two-phase flows.  相似文献   

14.
The magnetohydrodynamic(MHD) steady and unsteady axisymmetric flows of a viscous fluid over a two-dimensional shrinking sheet are addressed. The mathematical analysis is carried out in the presence of a large magnetic field. The steady state problem results in a singular perturbation problem having an infinite domain singularity. The secular term appearing in the solution is removed and a two-term uniformly valid solution is derived using the Lindstedt–Poincaré technique. This asymptotic solution is validated by comparing it with the numerical solution. The solution for the unsteady problem is also presented analytically in the asymptotic limit of large magnetic field. The results of velocity profile and skin friction are shown graphically to explore the physical features of the flow field. The stability analysis of the unsteady flow is made to validate the asymptotic solution.  相似文献   

15.
Laser velocimetries, such as LDV or laser-2-focus (L2F) velocimetry, have been widely used for a flow measurement in a high-speed rotating impeller. A particle image velocimetry (PIV) is one of the popular velocity measurement techniques for the ability to measure a velocity field. And a PIV offers an extensive velocity field in an extremely shorter measurement time than the laser velocimetries. In the present experiment, a PIV was applied to a flow measurement in a transonic centrifugal impeller. A phase locked measurement technique every 20% blade pitch was performed to obtain a velocity field over one blade pitch of the inducer. The measured velocity field at the inducer of impeller clearly showed a shock wave generated on the suction surface of a blade. The validity of the present technique was also discussed.  相似文献   

16.
ABSTRACT

The universality and mathematical physical structure of wall-bounded turbulent flows is a topic of discussions over many decades. There is no agreement about questions like what is the physical mean flow structure, how universal is it, and how universal are theoretical concepts for local and global flow variations. These questions are addressed by using latest direct numerical simulation (DNS) data at moderate Reynolds numbers Re and experimental data up to extreme Re. The mean flow structure is explained by analytical models for three canonical wall-bounded turbulent flows (channel flow, pipe flow, and the zero-pressure gradient turbulent boundary layer). Thorough comparisons with DNS and experimental data provide support for the validity of models. Criteria for veritable physics derived from observations are suggested. It is shown that the models presented satisfy these criteria. A probabilistic interpretation of the mean flow structure shows that the physical constraints of equal entropies and equally likely mean velocity values in a region unaffected by boundary effects impose a universal log-law structure. The structure of wall-bounded turbulent flows is much more universal than previously expected. There is no discrepancy between local logarithmic velocity variations and global friction law and bulk velocity variations. Flow effects are limited to the minimum: the difference of having a bounded or unbounded domain, and the variation range of mean velocity values allowed by the geometry.  相似文献   

17.
陶实  王亮  郭照立 《物理学报》2014,63(21):214703-214703
采用有效多松弛时间-格子Boltzmann方法(Effective MRT-LBM)数值模拟了微尺度条件下的振荡Couette和Poiseuille流动. 在微流动LBM中引入Knudsen边界层模型,对松弛时间进行修正. 模拟时平板或外力以正弦周期振动,Couette流中考虑了单平板振动、上下板同相振动这两类情况. 研究结果表明,修正后的MRT-LBM模型能有效用于这类非平衡的微尺度流动模拟;对于Couette流,随着Kn数的增大,壁面滑移效应变得越明显. St越大,板间速度剖面的非线性特性越剧烈;两板同相振荡时,若Kn,St均较小,板间流体受到平板拖动剪切的影响很小,板间速度几乎重叠在一起;在振荡Poiseuille流动中,St数增大到一定值时,相位滞后现象减弱;相对于Kn数,St数对振荡Couette 和Poiseuille流中不同位置处速度相位差的产生有较大影响. 关键词: 格子Boltzmann方法 有效MRT模型 Knudsen层 振荡流  相似文献   

18.
The results of experiments for turbulent flows in a thin layer of conducting fluid above a solid surface generated by the Ampere force when passing a current and under the action of a spatially periodic magnetic field are considered. The statistical characteristics of the flows are shown to exhibit three-dimensional (3D) dynamics even on horizontal scales exceeding the layer thickness by an order of magnitude. In this case, the third-order longitudinal structure functions of the velocity field are approximately linear in spatial displacement and negative, as in 3D turbulence, due to the dominant contribution of energy dissipation when the boundary condition for adhesion on the lower surface is met. The dissipation and basic energy production terms are estimated for the energy balance equation.  相似文献   

19.
Enlightened by the wide application of optical computerized tomography (OCT) in various flow fields’ visualization and parameter measurement, the potential feasibility of it on measuring gas jet flow velocity is discussed in this paper. The dependence of flow velocity on flow field's refractive index and dynamic pressure is deduced initially. An argon gas jet flow is chosen as an example for experiment, and the refractive index measurement is achieved by moiré tomography, while the dynamic pressure is obtained by a pressure sensor. In a word, both the theoretical and experimental results prove that OCT could be feasible to obtain the flow velocity of gas jet flows.  相似文献   

20.
We present a computational method for determining the geometry of a class of three-dimensional invariant manifolds in non-autonomous (aperiodically time-dependent) dynamical systems. The presented approach can be also applied to analyse the geometry of 3D invariant manifolds in three-dimensional, time-dependent fluid flows. The invariance property of such manifolds requires that, at any fixed time, they are given by surfaces in R3. We focus on a class of manifolds whose instantaneous geometry is given by orientable surfaces embedded in R3. The presented technique can be employed, in particular, to compute codimension one (invariant) stable and unstable manifolds of hyperbolic trajectories in 3D non-autonomous dynamical systems which are crucial in the Lagrangian transport analysis. The same approach can also be used to determine evolution of an orientable ‘material surface’ in a fluid flow. These developments represent the first step towards a non-trivial 3D extension of the so-called lobe dynamics — a geometric, invariant-manifold-based framework which has been very successful in the analysis of Lagrangian transport in unsteady, two-dimensional fluid flows. In the developed algorithm, the instantaneous geometry of an invariant manifold is represented by an adaptively evolving triangular mesh with piecewise C2 interpolating functions. The method employs an automatic mesh refinement which is coupled with adaptive vertex redistribution. A variant of the advancing front technique is used for remeshing, whenever necessary. Such an approach allows for computationally efficient determination of highly convoluted, evolving geometry of codimension one invariant manifolds in unsteady three-dimensional flows. We show that the developed method is capable of providing detailed information on the evolving Lagrangian flow structure in three dimensions over long periods of time, which is crucial for a meaningful 3D transport analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号