首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1前言三维非定常流场的求解是目前国内外的一个热点研究课题山。文献[2]完成了三维可压非定常欧拉流场的求解,这一方法在求解三维非定常欧拉流场时,应用了四阶fringe-Kutta方法对控制方程进行积分,用中心差分进行空间离散,采用了四阶人工粘性项来保证计算格式稳定,计算稳定性要求严格,时间步长不能大,计算时间长。本文从非定常三维粘性N-S方程组出发,通过合理的数学方法,消去压力及密度项,得到只包含振荡速度矢量项对空间的偏微分方程组,在已知定常速度场后,这一方程组很容易求解。2基本方程在以角速度为n作旋转的相对坐…  相似文献   

2.
叶型优化在非定常流动条件下效果的数值分析   总被引:4,自引:0,他引:4  
本文对叶型优化在非定常流动条件下的效果进行数值研究。叶型优化基于比较成熟的在定常流动条件下的反问题解法,非定常流动则考虑到动静叶栅之间的相互作用,非定常流动的求解在N-S方程的基础上采用分区计算的方法来完成。数值计算的结果表明,定常流动条件下优化得到的叶型在非定常流动条件下同样具有较好的气动性能。  相似文献   

3.
动静叶栅优化改型及其性能分析   总被引:1,自引:0,他引:1  
本文对动静叶栅分别进行优化改型,并对改型前后叶栅的气动性能进行数值分析。动静叶栅的优化改型基于正反问题相结合的流函数方法,性能分析一方面基于单排叶栅定常粘性流动的数值计算,另一方面基于动静叶栅相互干扰非定常粘性流动的数值计算。算例结果表明,经过优化改型后的动静叶栅的气动性能,无论在定常流动条件下还是在非定常流动条件下,相比改型前均有较大幅度的改善。  相似文献   

4.
Effects of Hall current on a steady hydromagnetic (MHD) fully developed flow in a rotating environment within a parallel plate channel in the presence of an inclined magnetic field is studied. From an extension of literature [13] subject to a forced oscillation it is observed that the present paper is methodically more correct to work first in the steady state where forced oscillation becomes insignificant and then new results are expected for an unsteady MHD flow under the influence of a pulse-oscillator. Exact solutions of the governing equations are obtained in a closed form. The graphical representation for the velocity and the induced magnetic field are depicted graphically and the heat transfer at both the plates are presented in tables.  相似文献   

5.
An exact solution of the governing equations of motion for the flow, induced by an impulsive start of a long flat plate, under the action of a strong transverse magnetic field with Hall currents, has been obtained in a closed form. Some interesting results along with the asymptotic cases of very small and very large times are discussed, accounting for the influence of the governing parameters on the flow character. It is seen that the time taken by the flow to attain the steady state increases due to Hall effect. The final steady flow is characterised by a boundary layer, of which the thickness increases due to Hall current.On leave fromRavenshaw College, Cuttack, Orissa, India.The author is indebted to Dr. R. S.Nanda for his help in the preparation of this paper, and to Dr. P.Mitschka for his constant ercouragement.  相似文献   

6.
单级高负荷向心透平三维黏性非定常计算   总被引:1,自引:0,他引:1  
对一台单级高负荷向心透平进行了三维黏性定常和非定常计算,计算得到的动叶出口以及下游的周向平均流场与文献提供的实验结果符合良好。在此基础上对流动的非定常特性进行了分析,发现由于动叶转速较高,且动叶下游不存在下一级静叶的干涉,流动的非定常效应主要体现在叶片排之间的区域以及动叶通道进口,动叶出口以及下游流动的非定常特性并不明显。非定常计算结果透平的级效率随时间的波动幅度达到了1.3%。  相似文献   

7.
In this paper we investigate the three-dimensional magnetohydrodynamic (MHD) rotating flow of a viscous fluid over a rotating sphere near the equator. The Navier-Stokes equations in spherical polar coordinates are reduced to a coupled system of nonlinear partial differential equations. Self-similar solutions are obtained for the steady state system, resulting from a coupled system of nonlinear ordinary differential equations. Analytical solutions are obtained and are used to study the effects of the magnetic field and the suction/injection parameter on the flow characteristics. The analytical solutions agree well with the numerical solutions of Chamkha et al. [31]. Moreover, the obtained analytical solutions for the steady state are used to obtain the unsteady state results. Furthermore, for various values of the temporal variable, we obtain analytical solutions for the flow field and present through figures.  相似文献   

8.
Analytical solutions for the peristaltic flow of a magneto hydrodynamic(MHD) Sisko fluid in a channel, under the effects of strong and weak magnetic fields, are presented. The governing nonlinear problem, for the strong magnetic field,is solved using the matched asymptotic expansion. The solution for the weak magnetic field is obtained using a regular perturbation method. The main observation is the existence of a Hartman boundary layer for the strong magnetic field at the location of the two plates of the channel. The thickness of the Hartmann boundary layer is determined analytically. The effects of a strong magnetic field and the shear thinning parameter of the Sisko fluid on the velocity profile are presented graphically.  相似文献   

9.
Unsteady flows in an electrically conducting rotating elastico-viscous liquid in the presence of a uniform magnetic field and induced by small amplitude torsional oscillations, acting for a finite time, of an infinite, rigid, non-conducting plate, are discussed. This analysis indicates the general features of the steady and unsteady velocity field, and the structure of the associated boundary layers on the plate including the effect of rotation, hydromagnetic and elastic parameters involved in the problem. The velocity field related to small elastic parameter is calculated with physical significance. It is further shown that the Ekman suction velocity, which is responsible for the generation of an axial inflow toward the bounadry layer, does not appear unless the plate is subject to oscillations for an indefinite period. Several limiting results are found to follow as special cases of this analysis.  相似文献   

10.
轴流叶轮机械三维非定常粘性流动数值分析   总被引:5,自引:0,他引:5  
1前言叶轮机内部流动的数值计算方法一般都是基于转子与静子结构相互无关的定常流动假设,这种假设实际上是认为转子叶排与静子叶排相距足够远,以至于相互之间互不干扰。事实上,叶轮机中的非定常性是其固有的,转子叶排与静子叶排相距很近,转子叶排的高速旋转、上游叶...  相似文献   

11.
了对短周期风洞实验中,实验段建立起周期性稳定流动的时间进行估算,以便在实验中把握测量时间,保证测量数据的有效性和推确性,本文采用显式时间推进方法求解二维Euler方程对短周期风洞中二维涡轮叶栅的非定常流动进行了模拟。除预测建立起周期性稳定流动过程中的流场特征和达到周期性稳定流动所需的时间外,对叶片的升力等冲击载荷在建立起周期性稳定流动过程中的变化也进行了估算,为三维涡轮部件瞬态实验方案的规划和实验设备的研制提供帮助  相似文献   

12.
The nanofluid and porous medium together are able to fulfill the requirement of high cooling rate in many engineering problems. So, here the impact of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium is examined. Moreover, the thermal radiation and viscous dissipation effects are considered. The problem governing partial differential equations are converted into self-similar coupled ordinary differential equations and those are numerically solved by the shooting method. The computed results can reveal many vital findings of practical importance. Firstly, dual solutions exist for decelerating unsteady flow and for accelerating unsteady and steady flows, the solution is unique. The presence of nanoparticles affects the existence of dual solution in decelerating unsteady flow only when the medium of the flow is a porous medium. But different shapes of nanoparticles are not disturbing the dual solution existence range, though it has a considerable impact on thermal conductivity of the mixture. Different shapes of nanoparticles act differently to enhance the heat transfer characteristics of the base fluid, i.e., the water here. On the other hand, the existence range of dual solutions becomes wider for a larger permeability parameter related to the porous medium. Regarding the cooling rate of the heated surface, it rises with the permeability parameter, shape factor (related to various shapes of Cu-nanoparticles), and radiation parameter. The surface drag force becomes stronger with the permeability parameter. Also, with growing values of nanoparticle volume fraction, the boundary layer thickness (BLT) increases and the thermal BLT becomes thicker with larger values of shape factor. For decelerating unsteady flow, the nanofluid velocity rises with permeability parameter in the case of upper branch solution and an opposite trend for the lower branch is witnessed. The thermal BLT is thicker with radiation parameter. Due to the existence of dual solutions, a linear stability analysis is made and it is concluded that the upper branch and unique solutions are stable solutions.  相似文献   

13.
The problem of steady two-dimensional laminar flow in slip flow regime of a viscous incompressible and electrically conducting fluid through an inclined channel of rectangular cross-section in presence of a transverse magnetic field has been considered. The walls of the channel are assumed to have prescribed temperatures and finite conductivities. The expressions for the velocity component, induced magnetic field and the temperature are obtained and their numerical results are shown graphically.  相似文献   

14.
非定常空气流场中污染气体的对流与粘性扩散   总被引:2,自引:1,他引:1  
基于离散涡方法求得的非定常、不稳定空气流场,数值求解了污染气体在空气中的对流湍流扩散方程.两者在每一个时间步耦合,以求非定常对流项.考虑速度脉动,改进了扩散模式.用SF6作为示踪气体,进行了现场测量实验.测得了各测点的SF6浓度随时间的变化.实验结果与数值仿真进行了对比,两者吻合.  相似文献   

15.
In this study, the fundamental problem of the biomagnetic (blood) fluid flow in a channel with stenosis under the influence of a steady localized magnetic field is studied. The mathematical model used for the formulation of the problem is consistent with the principles of ferrohydrodynamics (FHD) and magnetohydrodynamics (MHD). Blood is considered as a homogeneous Newtonian fluid and is treated as an electrically conducting magnetic fluid which also exhibits magnetization. For the numerical solution of the problem, which is described by a coupled, non-linear system of PDEs, with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by the development of an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the development of a semi-implicit numerical technique, transformations and stretching of the grid and proper construction of the boundary conditions for the vorticity. Results concerning the velocity and temperature field, skin friction and rate of heat transfer indicate that the presence of the magnetic field influences the flow field considerably.  相似文献   

16.
The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.  相似文献   

17.
This paper considers the oscillatory motion of gases inside a long porous tube of the closed-open type. In particular, the focus is placed on describing an analytical solution for the internal acoustico-vortical coupling that arises in the presence of appreciable wall suction. This unsteady field is driven by longitudinal oscillatory waves that are triggered by small unavoidable fluctuations in the wall suction speed. Under the assumption of small amplitude oscillations, the time-dependent governing equations are linearized through a regular perturbation of the dependent variables. Further application of the Helmholtz vector decomposition theorem enables us to discriminate between acoustical and vortical equations. After solving the wave equation for the acoustical contribution, the boundary-driven vortical field is considered. The method of matched-asymptotic expansions is then used to obtain a closed-form solution for the unsteady momentum equation developing from flow decomposition. An exact series expansion is also derived and shown to coincide with the numerical solution for the problem. The numerically verified end results suggest that the asymptotic scheme is capable of providing a sufficiently accurate solution. This is due to the error associated with the matched-asymptotic expansion being smaller than the error introduced in the Navier-Stokes linearization. A basis for comparison is established by examining the evolution of the oscillatory field in both space and time. The corresponding boundary-layer behavior is also characterized over a range of oscillation frequencies and wall suction velocities. In general, the current solution is found to exhibit features that are consistent with the laminar theory of periodic flows. By comparison to the Sexl profile in nonporous tubes, the critically damped solution obtained here exhibits a slightly smaller overshoot and depth of penetration. These features may be attributed to the suction effect that tends to attract the shear layers closer the wall.  相似文献   

18.
Various classes of steady and unsteady dark solitary waves (DSWs) are known to exist in modulation equations for water waves in finite depth. However, there is a class of steady DSWS of the full water-wave problem which are missed by the classical modulation equations such as the Hasimoto-Ono, Benney-Roskes, and Davey-Stewartson. These steady DSWs, recently discovered by Bridges and Donaldson, are pervasive in finite depth, arise through secondary criticality of Stokes gravity waves, and are synchronized with the Stokes wave. In this paper, the role of DSWs in modulation equations for water waves is reappraised. The intrinsic unsteady nature of existing modulation equations filters out some interesting solutions. On the other hand, the geometry of DSWs in modulation equations is very similar to the full water wave problem and these geometrical properties are developed. A model equation is proposed which illustrates the general nature of the emergence of steady DSWs due to wave-generated mean flow coupled to a periodic wave. Although the existing modulation equations are intrinsically unsteady, it is shown that there are also important shortcomings when one wants to use them for stability analysis of DSWs.  相似文献   

19.
本文给出了一个模拟叶栅内准三维定常和非定常粘性流动的数值方法。对于定常流动,采用TVD Lax-Wendroff格式和代数湍流模型求解雷诺平均Navier-Stokes方程,使用当地时间步长和多网格技术使计算加速收敛到定常状态;对于非定常流动,使用双时间步长和全隐式离散,采用与求解定常流动相似的多网格方法求解隐式离散方程。文中给出了VKI透平叶栅内的定常流结果和1.5级透平叶栅内的非定常数值结果。  相似文献   

20.
An idea of Born is reviewed and elaborated to non-separable quantum-mechanical eigenvalue problems in which the Schrödinger equation can be solved exactly for a subconfiguration. (By subconfiguration we mean a subsystem in which one dynamic variable of the whole system is considered as parameter; derivations with respect to this variable are omitted.) The eigenfunctions in the subconfiguration (e.g., the eigenfunctions of a Born-Oppenheimer approximation) are used as a basis to expand the eigenfunction of the complete problem. By analytical methods it is shown how to construct the complete ensemble of solutions which can be systematically mapped and classified by their analytical behaviour in one of the singularities (in a regular singularity). A modification of the Numerov procedure is given to the numerical solution of the coupled second-order ordinary differential equations which arise from our treatment. The analytical asymptotic solutions are used to bridge over the asymptotic regions in which the error of the Numerov procedure is large. As a concrete example the comprehensive asymptotic analysis of the Schrödinger equation of a hydrogen-like ion in strong homogeneous magnetic field is presented, practical methods and computational aspects are discussed, and finally a few actual numerical results are reported: some energy levels are given as a function of field strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号