首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
《Physics letters. A》2020,384(27):126705
We investigate the coherent feedback loop scheme to improve the quantum correlations transfer from optical to mechanical degrees of freedom in a double cavity optomechanical system. We use the Duan criterion to determine the separability of the two-mode mechanical states. The logarithmic negativity is employed to quantify the amount of the entanglement between mechanical modes in steady and dynamical regimes. We show that the entanglement can be significantly enhanced by a coherent feedback using a suitable tuning of the reflectivity parameter of the beam splitter located in each cavity. We also show that this enhancement is influenced by the temperature, the light squeezing parameter and the gain of the parameter amplifier. The entanglement dynamics in presence of the coherent feedback loop is also analyzed.  相似文献   

2.
We study theoretically the generation of strong entanglement of two mechanical oscillators in an unresolved-sideband optomechanical cavity, using a reservoir engineering approach. In our proposal, the effect of unwanted counter-rotating terms is suppressed via destructive quantum interference by the optical field of two auxiliary cavities. For arbitrary values of the optomechanical interaction, the entanglement is obtained numerically. In the weak-coupling regime, we derive an analytical expression for the entanglement of the two mechanical oscillators based on an effective master equation, and obtain the optimal parameters to achieve strong entanglement. Our analytical results are in accord with numerical simulations.  相似文献   

3.
邢贵超  夏云杰 《物理学报》2018,67(7):70301-070301
研究了与热库耦合的光学腔中三个相互作用的二能级原子间的纠缠动力学.采用拉普拉斯变换和下限共生等方法,通过数值计算,分析了原子间三体纠缠的演化以及腔场与热库间的两体纠缠演化,讨论了各耦合参数对系统纠缠演化的影响.研究结果表明:原子间纠缠在短时间内随着原子间耦合强度的增加而增加,随原子与腔场耦合强度的增加而减小,在长时极限下趋于一稳定值;体系的非马尔科夫性由原子与腔场的耦合强度以及热库的谱宽度共同决定,当热库与腔场为强耦合时,原子与腔场组成的系统遵循非马尔科夫动力学,此时随着热库谱宽的增加,原子系统由非马尔科夫性变为马尔科夫性,随着谱宽的继续增加,原子与腔场组成的系统遵循马尔科夫动力学,原子系统又表现出非马尔科夫性;调整腔场与热库的失谐可以有效抑制热库耗散对纠缠衰减的影响.  相似文献   

4.
In this paper,we study an optomechanical device consisting of a Fabry-P′erot cavity with two dielectric nanospheres trapped near the cavity mirrors by an external driving laser.In the condition where the distances between the nanospheres and cavity mirrors are small enough,the Casimir force helps the optomechanical coupling to induce a steady-state optomechanical entanglement of the mechanical and optical modes in a certain regime of parameters.We investigate in detail the dependence of the steadystate optomechanical entanglement on external control parameters of the system,i.e.,the effective detuning,the pump powers of the cavity,the cavity decay rate and the wavelength of the driving field.It is found that the large steady-state optomechanical entanglement,i.e.EN=5.76,can be generated with experimentally feasible parameters,i.e.the pump power P=18.2μW,the cavity decay rateκ=0.5 MHz and the wavelength of the laserλL=1064 nm,which should be checked by optical measurement.  相似文献   

5.
We investigate the dynamics of quantum discord in a system consisting of two Tavis-Cummings models, each of which contains two atoms driven by a classical field. We compare the dynamics of quantum discord for the system with that of entanglement and show that quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution. Furthermore, we examine the influence of the initial states and the classical field on the discord dynamics and find that the value of quantum discord can be improved by adjusting the classical driving field. Finally, the quantum discord of two atoms in dissipative cavity is also discussed.  相似文献   

6.
We investigate the quantum coherence and quantum entanglement dynamics of a classical driven single atom coupled to a single-mode cavity. It is shown that the transformation between the atomic coherence and the atom-field entanglement exists, and can be improved by adjusting the classical driving field. The joint evolution of two identical single-body systems is also studied. The results show the quantum coherence transfers among composite subsystems, and the coherence conservation of composite subsystems is obtained. Moreover, the classical driving field can be used to suppress the decay of the coherence and entanglement, owing to considering the leaky cavity. The non-Markovian dynamics of the system is also discussed finally.  相似文献   

7.
We study entanglement of the cavity modes in a double-cavity optomechanical system in strong-coupling regime. The system is consist of two optomechanical systems coupled by a single photon hopping between them. With the radiation pressure of the photon, entanglement of the cavity modes can be generated. The average concurrence of the cavity modes is at least twice larger than that of the mechanical modes. Moreover, when we change the ratio between coupling strength and resonant frequency of mechanical modes, the entanglement in cavity and mechanical modes are influenced differently.  相似文献   

8.
9.
The dynamics of the optomechanical entanglement between optical cavity field modes and a macroscopic mechanical breathing mode in a whispering-gallery cavity as well as the continuous variable entanglement between the phase-quadrature amplitudes of the two whispering-gallery modes have been analysed.Simulated results indicate that under state-of-the-art experimental conditions,optomechanical entanglement is obvious and can occur even at temperatures of above 40 K.Compared with the entanglement of the mechanical oscillator at the ground state temperature,optomechanical entanglement is more intense by several orders of magnitude.  相似文献   

10.
A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.  相似文献   

11.
We show how stationary entanglement between an optical cavity field mode and a macroscopic vibrating mirror can be generated by means of radiation pressure. We also show how the generated optomechanical entanglement can be quantified, and we suggest an experimental readout scheme to fully characterize the entangled state. Surprisingly, such optomechanical entanglement is shown to persist for environment temperatures above 20 K using state-of-the-art experimental parameters.  相似文献   

12.
We propose an experiment to create and verify entanglement between remote mechanical objects by use of an optomechanical interferometer. Two optical cavities, each coupled to a separate mechanical oscillator, are coherently driven such that the oscillators are laser cooled to the quantum regime. The entanglement is induced by optical measurement and comes about by combining the output from the two cavities to erase which-path information. It can be verified through measurements of degrees of second-order coherence of the optical output field. The experiment is feasible in the regime of weak optomechanical coupling. Realistic parameters for the membrane-in-the-middle geometry suggest entangled state lifetimes on the order of milliseconds.  相似文献   

13.
米贤武  柏江湘  李德俊 《中国物理 B》2012,21(3):30303-030303
The dynamics of the optomechanical entanglement between optical cavity field modes and a macroscopic mechanical breathing mode in a whispering-gallery cavity as well as the continuous variable entanglement between the phase-quadrature amplitudes of the two whispering-gallery modes have been analysed. Simulated results indicate that under state-of-the-art experimental conditions, optomechanical entanglement is obvious and can occur even at temperatures of above 40 K. Compared with the entanglement of the mechanical oscillator at the ground state temperature, optomechanical entanglement is more intense by several orders of magnitude.  相似文献   

14.
By starting from the stochastic Hamiltonian of the three correlated spins and modeling their frequency fluctuations as caused by dephasing noisy environments described by Ornstein-Uhlenbeck (OU) processes, we study the dynamics of quantum correlations, including entanglement and quantum discord. Of course, in this article, we use two definitions for the quantum discord (global quantum discord and quantum dissension). We prepared initially our open system with the Greenberger-Horne-Zeilinger (GHZ) and W states and present the exact solutions for evolution dynamics of entanglement and quantum discord between three spins under both Markovian and non-Markovian regime of this classical noise. By comparison the dynamics of entanglement with that of quantum discord we find that entanglement can be more robust than quantum discord against this noise. It is shown that by considering non-Markovian extensions the survival time of correlations prolong. Also, we compare the results of two definitions of the quantum discord and show that the quantum dissension is equal to the global quantum discord for GHZ state, but they are unequal for the W state.  相似文献   

15.
We theoretically investigate the stationary entanglement of a optomechanical system with an additional Kerr medium in the cavity. There are two kinds of interactions in the system, photon-mirror interaction and photon-photon interaction. The optomechanical entanglement created by the former interaction can be effectively controlled by the latter one. We find that the optomechanical entanglement is suppressed by Kerr interaction due to photon blockage. We also find that the Kerr interaction can create the stationary entanglement and induce the resonance of entanglement in the small detuning regime. These results show that the Kerr interaction is an effective control for the optomechanical system.  相似文献   

16.
陈雪  刘晓威  张可烨  袁春华  张卫平 《物理学报》2015,64(16):164211-164211
腔光力学系统近年来迅猛发展, 在精密测量、量子传感等方面已展现出重要的应用价值. 特别是与微纳技术和冷原子技术结合后, 这一系统正发展成为研究量子测量与量子操控的理想平台. 本文首先综述腔光力学在量子测量, 尤其是量子测量基础理论研究方面的进展; 然后分析腔光力学系统中的量子测量原理; 最后介绍我们近来在这方面的研究进展, 并通过我们设计的一系列新颖的基于腔光力学系统的量子测量方案来具体展示该系统在量子测量、量子操控等方面的潜在应用.  相似文献   

17.
Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential applications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including nonclassical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quantum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms,theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.  相似文献   

18.
I study an optomechanical system in which the mechanical motion of a single trapped ion is coupled to a cavity field for the realization of a strongly quantum correlated two-mode system. I show that for large pump intensities the steady state photon number exhibits bistable behaviour. I further analyze the occurrence of normal mode splitting (NMS) due to mixing of the fluctuations of the cavity field and the fluctuations of the ion motion which indicates a coherent energy exchange. I also find that in the parameter regime where NMS exists, the steady state of the system shows continuous variable entanglement. Such a two-mode optomechanical system can be used for the realization of continuous variable quantum information interfaces and networks.  相似文献   

19.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.  相似文献   

20.
翟良君  郑雨军  丁世良 《中国物理 B》2012,21(7):70503-070503
In this paper, the dynamics of chaos and the entanglement in triatomic molecular vibrations are investigated. On the classical aspect, we study the chaotic trajectories in the phase space. We employ the linear entropy to examine the dynamical entanglement of the two bonds on the quantum aspect. The correspondence between the classical chaos and the quantum dynamical entanglement is also investigated. As an example, we apply our algebraic model to molecule H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号