首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tian-Le Yang 《中国物理 B》2021,30(12):124201-124201
We theoretically study the stationary entanglement of two charged nanomechanical oscillators coupling via Coulomb interaction in an optomechanical system with an additional Kerr medium. We show that the degree of entanglement between two nanomechanical oscillators is suppressed by Kerr interaction due to photon blockade and enhanced by Coulomb coupling strength. We also show other parameters for adjusting and obtaining entanglement, such as the driving power and the frequencies of the two oscillators, and the entanglement is robust against temperature. Our study proves a way for adjusting stationary entanglement between two optomechanical oscillators by Coulomb interaction and Kerr medium.  相似文献   

2.
吴琴  肖银  张智明 《中国物理 B》2016,25(1):14203-014203
We propose a scheme for entangling two nanomechanical oscillators by Coulomb interaction in an optomechanical system. We find that the steady-state entanglement of two charged nanomechanical oscillators can be obtained when the coupling between them is stronger than a critical value which relies on the detuning. Remarkably, the degree of entanglement can be controlled by the Coulomb interaction and the frequencies of the two charged oscillators.  相似文献   

3.
Yuan-Yuan Liu 《中国物理 B》2022,31(9):94203-094203
We investigate the quantum entanglement in a double-cavity optomechanical system consisting of an optomechanical cavity and an auxiliary cavity, where the optomechanical cavity mode couples with the mechanical mode via radiation-pressure interaction, and simultaneously couples with the auxiliary cavity mode via nonreciprocal coupling. We study the entanglement between the mechanical oscillator and the cavity modes when the two cavities are reciprocally or nonreciprocally coupled. The logarithmic negativity $E_{n}^{(1)}$ ($E_{n}^{(2)}$) is adopted to describe the entanglement degree between the mechanical mode and the optomechanical cavity mode (the auxiliary cavity mode). We find that both $E_{n}^{(1)}$ and $E_{n}^{(2)}$ have maximum values in the case of reciprocal coupling. By using nonreciprocal coupling, $E_{n}^{(1)}$ and $E_{n}^{(2)}$ can exceed those maximum values, and a wider detuning region where the entanglement exists can be obtained. Moreover, the entanglement robustness with respect to the environment temperature is also effectively enhanced.  相似文献   

4.
We propose a scheme to suppress the laser phase noise without increasing the optomechanical single-photon coupling strength.In the scheme,the parametric amplification terms,created by Kerr and Duffing nonlinearities,can restrain laser phase noise and strengthen the effective optomechanical coupling,respectively.Interestingly,decreasing laser phase noise leads to increasing thermal noise,which is inhibited by bringing in a broadband-squeezed vacuum environment.To reflect the superiority of the scheme,we simulate quantum memory and stationary optomechanical entanglement as examples,and the corresponding numerical results demonstrate that the laser phase noise is extremely suppressed.Our method can pave the way for studying other quantum phenomena.  相似文献   

5.
Optomechanics describes the interaction of optical field with mechanical systems via radiation pressure which provides the interface between photons and phonons. Recently, the study of nonlinear behavior of optomechanical system attracts much attention. This paper studies theoretically the nonlinear behavior due to the presence of a Kerr nonlinear crystal inside an optomechanical microcavity. We first give an effective Hamiltonian of the system, then by solving the amplitude of both the optical and mechanical operators, two kinds of nonlinear effects, the bistability and the parametric gain on the mechanical mode of the system, are investigated. Moreover, we find that the intensity of the mechanical mode could be controlled in the presence of the nonlinear media.  相似文献   

6.
吴琴  张智明 《物理学报》2013,62(17):174206-174206
研究了Kerr介质中两个耦合二能级原子的纠缠演化规律, 通过concurrence计算了系统的纠缠度, 讨论了系统初态、Kerr 介质和原子之间的偶极相互作用对腔中两个原子纠缠度的影响. 结果表明: 通过适当选取Kerr介质的耦合系数和偶极相互作用强度, 可以获得固定的两原子纠缠, 并且可以提高两原子之间的纠缠, 甚至彻底消除纠缠猝死现象. 关键词: 偶极相互作用 Kerr介质 concurrence  相似文献   

7.
We propose a novel scheme for generating the entanglement of two oscillating mirrors in an optomechanical system via a flying atom. In this scheme, a two-level atom, in an arbitrary superposition state, passes through an optomechanical system with two oscillating cavity-mirrors, and then its states are detected. In this way, we can generate the entangled states of the two oscillating mirrors. We derive the analytical expressions of the entangled states and make numerical calculations. We find that the entanglement of the two oscillating mirrors can be controlled by the initial state of the atom,the optomechanical coupling strength, and the coupling strength between the atom and the cavity field. We investigate the dynamics of the system with dissipations and discuss the experimental feasibility.  相似文献   

8.
张秀龙  鲍倩倩  杨明珠  田雪松 《物理学报》2018,67(10):104203-104203
腔光力学系统中的光辐射压力可以使系统中的各个子系统之间产生量子纠缠,最近在腔光力学系统中的量子纠缠引起了人们广泛的关注.本文研究了双腔光力系统中关于输出光场之间纠缠的性质,发现:此系统中力学振子的弛豫速率和滤波器带宽以及非相等耦合对输出光场之间纠缠的大小有着非常显著的影响,特别是在相等耦合条件下,输出光场中心频率与光腔本征频率近共振时,滤波器带宽对输出光场纠缠有着显著的抑制作用;但是如果采用非相等耦合,则可以有效抵制滤波器带宽对纠缠的抑制作用,使输出光场纠缠得到大幅提高.研究结果可应用在光力耦合系统中实现量子态转换、量子隐形传态等量子信息处理过程.  相似文献   

9.
We propose a scheme for the realization of a hybrid, strongly entangled system formed of an atomic ensemble surrounded by a quadratically coupled optomechanical cavity with a vibrating mirror. We firstly investigate the steady-state bipartite entanglement between the movable mirror and the cavity mode with the help of an atomic media. It shows that the introduction of the atomic medium can greatly improve the entanglement between the movable mirror and the cavity mode. Secondly, steady-state tripartite entanglement including the movable mirror, the cavity and atom media are investigated. We find the robust tripartite entanglement persists in the present system.  相似文献   

10.
Shi-Wei Cui 《中国物理 B》2021,30(11):110311-110311
In order to understand our previous numerical finding that steady-state entanglement along the instability boundary remains unchanged in a three-mode optomechanical system [Phys. Rev. A 101 023838 (2020)], we investigate in detail the boundary entanglement in a simpler two-mode optomechanical system. Studies show that both the mechanism to generate entanglement and the parameter dependence of boundary entanglement are quite similar in these two models. Therefore, the two-mode system has captured the main features in the three-mode system. With the help of analytical calculations and discussing in a much bigger parameter interval, we find that the unchanging behavior previously discovered is actually an extremely slow changing behavior of the boundary entanglement function, and most importantly, this nearly invariant boundary entanglement is a general phenomenon via parametric down conversion process in the weak dissipation regime. This is by itself interesting as threshold quantum signatures in optomechanical phonon lasers, or may have potential value in related applications based on boundary quantum properties.  相似文献   

11.
Entanglement dynamics of the atoms in the double Jaynes-Cummings models with the Kerr medium is studied, and the effect of the Kerr medium on that is examined. The result shows that, the Kerr medium can control the entanglement dynamics of the atoms and repress entanglement sudden death. We can obtain the maximum entanglement between the atoms by strengthening the nonlinear interaction of the Kerr medium.  相似文献   

12.
We investigate the influence of Kerr medium on atomic population probability and residual entanglement of the system which consists of cascade-type three-level atoms and a bimodal cavity field filled with Kerr medium. The results show that the period of residual entanglement is shortened and the value of residual entanglement is enhanced by appropriately adjusting the nonlinear Kerr constant. Furthermore, we also study the influence of Kerr medium on entanglement evolution of the two atoms, and find that it decreases the value of entanglement between two atoms.  相似文献   

13.
A hybrid optomechanical system which is composed of an atomic ensemble and a standard optomechanical cavity driven by a periodically modulated external laser field is investigated. Based on the simple periodic modulation forms of the driving amplitude and effective optomechanical coupling, respectively, the atom‐mirror entanglement is discussed in detail. It is found that the maximum of the entanglement in the unresolved‐sideband regime can be further enhanced compared with the non‐modulation regime. On the other hand, we find that the introduction of the atomic ensemble permits the mechanical squeezing induced by the periodic amplitude modulation can be successfully generated even in the unresolved‐sideband regime. Due to the self‐cooling mechanism constructed by the atomic ensemble, the mechanical squeezing scheme no longer requires the extra precooling technologies.  相似文献   

14.
马永红  周玲 《中国物理 B》2013,22(2):24204-024204
We propose a feasible scheme to generate electromagnetically induced transparency(EIT) and quadripartite macroscopic entanglement in an optomechanical system with one fixed mirror and three movable perfectly reflecting mirrors.We explore the EIT phenomena in this optomechanical system.Results show the appearance of EIT dips in the output field.Moreover,we demonstrate how steady-state quadripartite entanglement can be generated via radiation pressure.We also quantify the bipartite entanglement in each field-mirror subsystem and in the mirror-mirror subsystem.Findings show that a high intensity of entanglement between two subsystems can be achieved.  相似文献   

15.
压缩真空场与原子非线性作用过程中的纠缠与消纠缠   总被引:12,自引:0,他引:12       下载免费PDF全文
用Von Neumann熵研究了附加克尔介质的压缩真空场与二能级原子依赖强度耦合相互作用量子体系的量子纠缠特性.讨论了初始压缩真空场的压缩度以及克尔非线性作用的强度对该量子体系纠缠特性的影响.结果表明,克尔介质的非线性作用的强弱可以改变体系量子纠缠的周期性;在初始压缩度较大(r=5)时,克尔介质的非线性作用可导致原子与场持续地处于最大纠缠态,无消纠缠态或持续地处于消纠缠态. 关键词: 压缩真空态 克尔介质 依赖强度耦合J-C模型 Von Neumann熵 量子纠缠  相似文献   

16.
We investigate the generation of quantum correlations between mechanical modes and optical modes in an optomechanical system,using the rotating wave approximation.The system is composed of two Fabry-Perot cavities separated in space;each of the two cavities has a movable end-mirror.Our aim is the evaluation of entanglement between mechanical modes and optical modes,generated by correlations transfer from the squeezed light to the system,using Gaussian intrinsic entanglement as a witness of entanglement in continuous variables Gaussian states,and the quantification of the degree of mixedness of the Gaussian states using the purity.Then,we quantify nonclassical correlations between mechanical modes and optical modes even beyond entanglement by considering Gaussian geometric discord via the Hellinger distance.Indeed,entanglement,mixdness,and quantum discord are analyzed as a function of the parameters characterizing the system(thermal bath temperature,squeezing parameter,and optomechanical cooperativity).We find that,under thermal effect,when entanglement vanishes,purity and quantum discord remain nonzero.Remarkably,the Gaussian Hellinger discord is more robust than entanglement.The effects of the other parameters are discussed in detail.  相似文献   

17.
齐琳娜  张寿 《物理学报》2009,58(7):4630-4634
在Milburn方程的支配下,研究了在偶极相互作用存在的前提下Kerr介质对两原子系统纠缠度的影响.通过concurrence计算了系统的纠缠度,讨论了concurrence随时间的振荡情况.结果表明,在偶极相互作用存在的前提下,通过适当选取Kerr介质的耦合常数χ,可以更好地提高系统的纠缠度,从而有效地抑制内禀消相干的作用.同时还发现在增大纠缠度方面,对于Ω的不同取值,倍数Λ的取值也不同. 关键词: Milburn理论 偶极相互作用 Kerr介质 concurrence  相似文献   

18.
We investigate a hybrid optomechanical system consisting of two coupled cavities, one of them is composed of two-end fixed mirrors(called the traditional cavity), and the other has a one-end oscillating mirror(named as the optomechanical eavity). A Kerr medium is inside the traditional cavity to enhance the nonlinearity due to the fact that it can cause observing of bistable behavior in intracavity intensity for the optomechanical cavity.The Hamiltonian of the system is written in a rotating frame and its dynamics is described by quantum Langevin equations of motion. Our proposed s.ystem exhibits unconventional plots for the mean photon number of the optomechanical cavity which are not observed in previous works. The present results show a deep effect of the Kerr medium on optical bistability of intracavity intensity for the optomechanical cavity. Also, coupling strength of the cavities can effectively change the stability of the system.  相似文献   

19.
We study theoretically the generation of strong entanglement of two mechanical oscillators in an unresolved-sideband optomechanical cavity, using a reservoir engineering approach. In our proposal, the effect of unwanted counter-rotating terms is suppressed via destructive quantum interference by the optical field of two auxiliary cavities. For arbitrary values of the optomechanical interaction, the entanglement is obtained numerically. In the weak-coupling regime, we derive an analytical expression for the entanglement of the two mechanical oscillators based on an effective master equation, and obtain the optimal parameters to achieve strong entanglement. Our analytical results are in accord with numerical simulations.  相似文献   

20.
In this work, we introduce the standard Tavis-Cummings model to describe two-qubit system interacting with a single-mode field associated to power-law (PL) potentials. We explore the effect of the time-dependent interaction and the Kerr-like medium. We solve the Schrödinger equation to obtain the density operator that allows us to investigate the dynamical behaviour of some quantumness measures, such as von Neumann entropy, negativity and Mandel’s parameter. We provide how these entanglement measures depend on the system parameters, which paves the way towards better control of entanglement generation in two-qubit systems. We find that the enhancement and preservation of the atoms-field entanglement and atom-atom entanglement can be achieved by a proper choice of the initial parameters of the field in the absence and presence of the time-dependent interaction and Kerr medium. We examine the photons distribution of the field and determine the situations for which the field exhibits super-poissonian, poissonian or sub-poissonian distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号