首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider two dimensional surfaces ${X : \Omega\to\mathbb R^{n+2}, \Omega\subset \mathbb C, w=u+iv\mapsto X(w)}$ with arbitrary codimension n and prove a barrier principle for strong (possibly branched) subsolutions ${X\in C^1(\Omega, \mathbb {R}^{n+2})\cap H_{2,{\rm loc}}^2(\Omega,\mathbb R^{n+2})}$ of the integral inequality $$\int_{\Omega} \Big\lbrace \langle \nabla X, \nabla \varphi\rangle +2W \sum_{k=1}^n H_k \langle N_k,\varphi \rangle \Big\rbrace \; dudv\ge 0$$ with mean curvature functions (H k ) k=1,...,n which lie locally on one side of a supporting hypersurface S. We show under suitable assumption on the 2-mean curvature of the supporting surface S that X is locally contained in S. This generalizes a corresponding result for surfaces in ${\mathbb R^3}$ , cf. (Dierkes et al., Regularity of Minimal Surfaces, §4.4, 2010).  相似文献   

2.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

3.
4.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

5.
Let $\mathcal X $ and $\mathcal Y $ be Banach spaces, and let $A\in \mathcal B (\mathcal X )$ and $C\in \mathcal B (\mathcal Y , \mathcal X )$ be given operators. A necessary and sufficient condition is given for $\left[ \begin{array}{cc} A&C \\ X&Y \\ \end{array} \right]$ to be invertible (respectively, left invertible) for some $X\in \mathcal B (\mathcal X , \mathcal Y )$ and $Y\in \mathcal B (\mathcal Y )$ . Furthermore, some related results are obtained.  相似文献   

6.
Let ?? be a bounded open subset of ${\mathbb{G}}$ , where ${\mathbb{G}}$ is a Carnot group, and let ${u: \Omega \rightarrow \mathbb{R}^d}$ be a vector valued function. We prove a lower semicontinuity result in the weak topology of the horizontal Sobolev space ${W^{1,p}_X(\Omega,\mathbb{R}^d)}$ , with p?>?1, of the integral functional of the calculus of variations of the type $$F(u)=\int\limits_\Omega f(Xu)\,dx$$ where f is a X-quasiconvex function satisfying a non-standard growth conditions and Xu is the horizontal gradient of u.  相似文献   

7.
Let $(\Omega , \Sigma , \mu )$ be a measure space and let $\varphi _1, \ldots , \varphi _n$ and $\varphi $ be Young functions. In this paper, we, among other things, prove that the set $E=\{(f_1, \ldots ,f_n)\in M^{\varphi _1}\times \cdots \times M^{\varphi _n}:\, N_\varphi (f_1\cdots f_n)<\infty \}$ is a $\sigma $ - $c$ -lower porous set in $M^{\varphi _1}\times \cdots \times M^{\varphi _n}$ , under mild restrictions on the Young functions $\varphi _1, \ldots , \varphi _n$ and $\varphi $ . This generalizes a recent result due to G? a? b and Strobin (J Math Anal Appl 368:382–390, 2010) to more general setting of Orlicz spaces. As an application of our results, we recover a sufficient and necessary condition for Orlicz spaces to be closed under the pointwise multiplication due to Hudzik (Arch Math 44:535–538, 1985) and Arens et al. (J Math Anal Appl 177:386–411, 1993).  相似文献   

8.
A lower semicontinuity and relaxation result with respect to weak-* convergence of measures is derived for functionals of the form $$\mu \in \mathcal{M}(\Omega; \mathbb{R}^d) \to \int \limits_\Omega f(\mu^a(x))\,{\rm {d}}x +\int \limits_\Omega f^\infty \left( \frac{{\rm{d}}\mu^s}{d|\mu^s|}(x)\right) \, d| \mu^s|(x),$$ where admissible sequences {μ n } are such that ${\{{\mathcal{A}}\mu_{n}\}}$ converges to zero strongly in ${W^{-1 q}_{\rm loc}(\Omega)}$ and ${\mathcal {A}}$ is a partial differential operator with constant rank. The integrand f has linear growth and L -bounds from below are not assumed.  相似文献   

9.
Let $\mathcal{X}$ be a metric space with doubling measure and L a nonnegative self-adjoint operator in $L^{2}(\mathcal{X})$ satisfying the Davies–Gaffney estimates. Let $\varphi:\mathcal{X}\times[0,\infty)\to[0,\infty)$ be a function such that φ(x,?) is an Orlicz function, $\varphi(\cdot,t)\in\mathbb{A}_{\infty}(\mathcal{X})$ (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index I(φ)∈(0,1], and it satisfies the uniformly reverse Hölder inequality of order 2/[2?I(φ)]. In this paper, the authors introduce a Musielak–Orlicz–Hardy space $H_{\varphi,L}(\mathcal{X})$ , by the Lusin area function associated with the heat semigroup generated by L, and a Musielak–Orlicz BMO-type space $\mathrm{BMO}_{\varphi,L}(\mathcal{X})$ , which is further proved to be the dual space of $H_{\varphi,L}(\mathcal{X})$ and hence whose φ-Carleson measure characterization is deduced. Characterizations of $H_{\varphi,L}(\mathcal{X})$ , including the atom, the molecule, and the Lusin area function associated with the Poisson semigroup of L, are presented. Using the atomic characterization, the authors characterize $H_{\varphi,L}(\mathcal{X})$ in terms of the Littlewood–Paley $g^{\ast}_{\lambda}$ -function $g^{\ast}_{\lambda,L}$ and establish a Hörmander-type spectral multiplier theorem for L on $H_{\varphi,L}(\mathcal{X})$ . Moreover, for the Musielak–Orlicz–Hardy space H φ,L (? n ) associated with the Schrödinger operator L:=?Δ+V, where $0\le V\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n})$ , the authors obtain its several equivalent characterizations in terms of the non-tangential maximal function, the radial maximal function, the atom, and the molecule; finally, the authors show that the Riesz transform ?L ?1/2 is bounded from H φ,L (? n ) to the Musielak–Orlicz space L φ (? n ) when i(φ)∈(0,1], and from H φ,L (? n ) to the Musielak–Orlicz–Hardy space H φ (? n ) when $i(\varphi)\in(\frac{n}{n+1},1]$ , where i(φ) denotes the uniformly critical lower type index of φ.  相似文献   

10.
Let X be a realcompact space and ${H:C(X)\rightarrow\mathbb{R}}$ be an identity and order preserving group homomorphism. It is shown that H is an evaluation at some point of X if and only if there is ${\varphi\in C(\mathbb{R})}$ with ${\varphi(r)>\varphi(0)}$ for all ${r\in\mathbb{R}-\{0\}}$ for which ${H\circ\varphi=\varphi\circ H}$ . This extends (and unifies) classical results by Hewitt and Shirota.  相似文献   

11.
We consider the problem of the possibility of approximating solenoidal vectors from the Sobolev spaces \(\mathop W\limits^o{_\rho}{^1} (\Omega )\) by finite solenoidal vectors. The answer is positive if ΩcRn, n=2,3, is a strictly Lipschitz domain. We give examples of domains with noncompact boundaries for which such an approximation is not possible. We consider the auxiliary problem \(div \vec u = \varphi ,\vec u \in \mathop W\limits^o{_\rho}{^1} (\Omega )\) if the function τ ε Lp(Ω) is given.  相似文献   

12.

Definition

Let A??n, 0<β≤∞. Define $$h_{\varphi ,\beta } (A) = \inf \left( {\sum\limits_{i = 0}^{ + \infty } {\left( {m_j \varphi (2^{ - i} } \right)^\beta } } \right)^{1/\beta } $$ where the infinum is taken over all coverings of A by a countable number of balls, whose radii rj do not exceed 1, while mi is the number of balls from this covering whose radii rj belong to the set (2?i?1, 2?i], i∈N0.

Theorem 1

Let p≤1, θ=∞, and let the function ?(t)tlp?n increase. Then the following conditions are 2quivalent;
  1. for any compact set K, K??n, if $\overline {cap} (K, X) = 0$ , then h?,∞(K)=0;

Theorem 2

Let θ<1. Then for any set A the inequalities $c_1 \overline {cap} (A,X) \leqslant h_{t^{n - lp} ,\theta /p} (A) \leqslant c_2 \overline {cap} (A,X)$ hold. Bibliography:6 titles.  相似文献   

13.
14.
Let Ω be a connected open subset of R d . We analyse L 1-uniqueness of real second-order partial differential operators ${H = - \sum^d_{k,l=1} \partial_k c_{kl} \partial_l}$ and ${K = H + \sum^d_{k=1}c_k \partial_k + c_0}$ on Ω where ${c_{kl} = c_{lk} \in W^{1,\infty}_{\rm loc}(\Omega), c_k \in L_{\infty,{\rm loc}}(\Omega), c_0 \in L_{2,{\rm loc}}(\Omega)}$ and C(x) = (c kl (x)) > 0 for all ${x \in \Omega}$ . Boundedness properties of the coefficients are expressed indirectly in terms of the balls B(r) associated with the Riemannian metric C ?1 and their Lebesgue measure |B(r)|. First, we establish that if the balls B(r) are bounded, the Täcklind condition ${\int^\infty_R dr r({\rm log}|B(r)|)^{-1} = \infty}$ is satisfied for all large R and H is Markov unique then H is L 1-unique. If, in addition, ${C(x) \geq \kappa (c^{T} \otimes c)(x)}$ for some ${\kappa > 0}$ and almost all ${x \in \Omega}$ , ${{\rm div} c \in L_{\infty,{\rm loc}}(\Omega)}$ is upper semi-bounded and c 0 is lower semi-bounded, then K is also L 1-unique. Secondly, if the c kl extend continuously to functions which are locally bounded on ?Ω and if the balls B(r) are bounded, we characterize Markov uniqueness of H in terms of local capacity estimates and boundary capacity estimates. For example, H is Markov unique if and only if for each bounded subset A of ${\overline\Omega}$ there exist ${\eta_n \in C_c^\infty(\Omega)}$ satisfying , where ${\Gamma(\eta_n) = \sum^d_{k,l=1}c_{kl} (\partial_k \eta_n) (\partial_l \eta_n)}$ , and for each ${\varphi \in L_2(\Omega)}$ or if and only if cap(?Ω) = 0.  相似文献   

15.
16.
Let $(\lambda ^k_p)_k$ be the usual sequence of min-max eigenvalues for the $p$ -Laplace operator with $p\in (1,\infty )$ and let $(\lambda ^k_1)_k$ be the corresponding sequence of eigenvalues of the 1-Laplace operator. For bounded $\Omega \subseteq \mathbb{R }^n$ with Lipschitz boundary the convergence $\lambda ^k_p\rightarrow \lambda ^k_1$ as $p\rightarrow 1$ is shown for all $k\in \mathbb{N }$ . The proof uses an approximation of $BV(\Omega )$ -functions by $C_0^\infty (\Omega )$ -functions in the sense of strict convergence on $\mathbb{R }^n$ .  相似文献   

17.
18.
In this paper we characterize the so called uniformly rectifiable sets of David and Semmes in terms of the Wasserstein distance W 2 from optimal mass transport. To obtain this result, we first prove a localization theorem for the distance W 2 which asserts that if??? and ?? are probability measures in ${{\mathbb{R}^n}}$ , ${{\varphi}}$ is a radial bump function smooth enough so that ${{\int \varphi d \mu \gtrsim 1}}$ , and??? has a density bounded from above and from below on supp( ${{\varphi}}$ ), then ${{W_2(\varphi \mu, a\varphi \nu) \leq cW_2(\mu, \nu)}}$ , where ${{a = \int \varphi d\mu/ \int \varphi d\nu}}$ .  相似文献   

19.
Let ${{\varphi}}$ be an analytic self-map of the open unit disk ${{\mathbb{D}}}$ in the complex plane ${{\mathbb{C}, H(\mathbb{D})}}$ the space of complex-valued analytic functions on ${{\mathbb{D}}}$ , and let u be a fixed function in ${{H(\mathbb{D})}}$ . The weighted composition operator is defined by $$(uC_{\varphi}f)(z) = u(z)f({\varphi}(z)), \quad z \in \mathbb{D}, f \in H(\mathbb{D}).$$ In this paper, we study the boundedness and the compactness of the weighted composition operators from the minimal Möbius invariant space into the Bloch space and the little Bloch space.  相似文献   

20.
In this note, we prove a sharp lower bound for the log canonical threshold of a plurisubharmonic function ${\varphi}$ with an isolated singularity at 0 in an open subset of ${\mathbb{C}^n}$ . This threshold is defined as the supremum of constants c > 0 such that ${e^{-2c\varphi}}$ is integrable on a neighborhood of 0. We relate ${c(\varphi)}$ to the intermediate multiplicity numbers ${e_j(\varphi)}$ , defined as the Lelong numbers of ${(dd^c\varphi)^j}$ at 0 (so that in particular ${e_0(\varphi)=1}$ ). Our main result is that ${c(\varphi)\geqslant\sum_{j=0}^{n-1} e_j(\varphi)/e_{j+1}(\varphi)}$ . This inequality is shown to be sharp; it simultaneously improves the classical result ${c(\varphi)\geqslant 1/e_1(\varphi)}$ due to Skoda, as well as the lower estimate ${c(\varphi)\geqslant n/e_n(\varphi)^{1/n}}$ which has received crucial applications to birational geometry in recent years. The proof consists in a reduction to the toric case, i.e. singularities arising from monomial ideals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号