首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Ohmic contact formation on n-GaN using a novel Ti/Al/W2B/Ti/Au metallization scheme was studied using contact resistance, scanning electron microscopy and Auger electron spectroscopy measurements. A minimum specific contact resistivity of 7 × 10−6 Ω cm2 was achieved at an annealing temperature of 800 °C. The contact resistance was essentially independent of measurement temperature, indicating that field emission plays a dominant role in the current transport .The Ti began to outdiffuse to the surface at temperatures of ∼500 °C, while at 800 °C the Al also began to intermix within the contact. By 1000 °C, the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization. The contact resistance showed excellent stability for extended periods at 200 °C, which simulates the type of device operating temperature that might be expected for operation of GaN-based power electronic devices.  相似文献   

2.
A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 1018 cm−3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I-V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10−6 Ω cm2 after annealing at 900 °C for 1 min in a N2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.  相似文献   

3.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

4.
The electrical behaviour of lateral Al/n-GaN/Al structures has been studied by current-voltage measurements between a large pad with an area of 22 mm2 and small contacts with different areas in the range of 0.01-1 mm2. The results indicated that near room temperature the current was limited by the GaN layer exhibiting linear I-V characteristics for large contacts around 1 mm2, while it was contact limited for small contacts around 0.1 mm2 and below. This indicates that the same metal contact can behave as ohmic or rectifying depending on the contact area and so on the ratio of contact resistance to the series resistance of the structure.Near liquid nitrogen temperature, the current through the lateral Al/n-GaN/Al structures was limited by space charges. The Al/n-GaN contacts exhibited a very low Schottky barrier height below or around 0.2 eV. A new possible mechanism responsible for the temperature dependence of the ideality factor is proposed.  相似文献   

5.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

6.
The use of a TiB2 diffusion barrier for Ni/Au contacts on p-GaN is reported. The annealing temperature (25-950 °C) dependence of ohmic contact characteristics using a Ni/Au/TiB2/Ti/Au metallization scheme deposited by sputtering were investigated by contact resistance measurements and auger electron spectroscopy (AES). The as-deposited contacts are rectifying and transition to ohmic behavior for annealing at ≥500 °C . A minimum specific contact resistivity of ∼3 × 10−4 Ω cm−2 was obtained after annealing over a broad range of temperatures (800-950 °C for 60 s). The contact morphology became considerably rougher at the higher end of this temperature range. AES profiling showed significant Ti and Ni outdiffusion through the TiB2 at 800 °C. By 900 °C the Ti was almost completely removed to the surface, where it became oxidized. Use of the TiB2 diffusion barrier produces superior thermal stability compared to the more common Ni/Au, whose morphology degrades significantly above 500 °C.  相似文献   

7.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

8.
The electrical and microstructural properties of the PdSi based ohmic contacts on n-InP are discussed in the research. A low specific contact resistance of 2.25 × 10−6 Ω cm2 is obtained on Au/Si/Pd/n-InP contact after rapid thermal annealing (RTA) at 450 °C for 30 s. The low contact resistance can be maintained at the order of 10−6 Ω cm2 even up to 500 °C annealing. From the Auger analysis, it is found that both the outdiffusion of In and the indiffusion of Si into the InP surface occurred at the ohmic contact sample. The formation of the Pd3Si compound lowered the barrier of the contact. The reactions between Pd and InP of the contact, forming In vacancies, and leading the doping of Si to the InP contact interface.  相似文献   

9.
We oxidized a Ni/Au metal bi-layer contact fabricated on HVPE Al0.18Ga0.82N from 373 K to 573 K in 100 K steps. In the range 1 kHz to 2 MHz, the Capacitance–Voltage–Frequency (C–V–f) measurements reveal a frequency dispersion of the capacitance and the presence of an anomalous peak at 0.4 V owing to the presence of interface states in the as deposited contact system. The dispersion was progressively removed by O2 anneals from temperatures as low as 373 K. These changes are accompanied by an improvement in the overall quality of the Schottky system: the ideality factor, n, improves from 2.09 to 1.26; the Schottky barrier height (SBH), determined by the Norde [1] method, increases from 0.72 eV to 1.54 eV. From the Nicollian and Goetzberger model [2], we calculated the energy distribution of the density of interface states, NSS. Around 1 eV above the Al0.18Ga0.82N valence band, NSS, decreases from 2.3×1012 eV−1 cm−2 for the un-annealed diodes to 1.3×1012 eV−1 cm−2 after the 573 K anneal. Our results suggest the formation of an insulating NiO leading to a MIS structure for the oxidized Au/Ni/Al0.18Ga0.82N contact.  相似文献   

10.
There is a strong interest in developing thermally stable metallization schemes for ZnO and boride-based contact stacks are expected to have potential because of their thermodynamic stability. The contact characteristics on bulk single-crystal n-ZnO of a ZrB2/Pt/Au metallization scheme deposited by sputtering are reported as a function of annealing temperature in the range 300-800°C. The contacts were rectifying for anneal temperatures <500 °C but exhibited Ohmic behavior at higher temperatures and exhibit a minimum specific contact resistivity of 9 × 10−3 Ω cm after 700 °C anneals. The contact stack reverts to rectifying behavior after annealing above 800 °C, coincident with a degraded surface morphology and intermixing of the Au, Pt and ZrB2. The boride-based contacts exhibit higher thermal stability but poorer specific contact resistivity than conventional Ti/Au metal stacks on ZnO.  相似文献   

11.
The water/graphitic-carbon interaction energy was obtained for a sample having a water surface site adsorption density of 13.3 μmol m−2. The interaction energy was determined from the spreading pressure of water, its surface tension and the water contact angle and using a formula obtained by the combination of the Young equation with a general equation of pair interaction. The values obtained for contact angles 42° and 86° are 7.63 and 7.18 kJ mol−1 of water are similar to the water binding energies obtained from molecular dynamic simulations of water droplets on a graphite surface: 6.7-8.33 kJ mol−1.  相似文献   

12.
A Ru capping layer is employed to improve the thermal stability of Ag ohmic reflectors for high-power GaN-based light-emitting diodes (LEDs). The 20-nm-thick Ru capping layer is shown to be fairly effective in suppressing agglomeration by forming RuO2. The Ag/Ru contacts exhibit specific contact resistance of 8.1 × 10−5 Ω cm2 and reflectance of ∼89% at a wavelength of 450 nm when annealed at 500 °C for 1 min, which are much better than that of Ag only contacts. Blue LEDs fabricated with the 500 °C-annealed Ag/Ru contacts give a forward voltage of 2.98 V at an injection current of 20 mA, which is lower than that (3.02 V) of LEDs with the 500 °C-annealed Ag only contacts. LEDs with the 500 °C-annealed Ag/Ru contacts show 25% higher output power (at 20 mA) than LEDs with the 500 °C-annealed Ag only contacts. X-ray photoemission spectroscopy examinations are performed to describe the improved electrical performance of the Ag/Ru contacts.  相似文献   

13.
Ir-based electrical contacts to p-type GaN have been fabricated and characterized. Both GaN//Ni/Au/Ir/Au and GaN//Ni/Ir/Au contact structures were deposited, however, only the former produced Ohmic current-voltage characteristics. At an anneal temperature of 500 °C, the Ni/Au/Ir/Au contact had a specific contact resistance of ∼2 × 10−4 Ω cm2, comparable or superior to conventional Ni/Au contacts that are less thermally stable. Anneal temperatures above 500 °C caused the Ir-based contact to fail. Auger electron spectroscopy was used to obtain depth profiles of both types of contacts at a variety of temperatures in order to provide insight into the mechanism of Ohmic formation as well as potential reasons for failure. A comparison to other metallization schemes on p-GaN is also given.  相似文献   

14.
Unintentionally doped high-Al-content Al0.45Ga0.55N/GaN high electron mobility transistor (HEMT) structures with and without AlN interfacial layer were grown by metal-organic chemical vapor deposition (MOCVD) on two-inch sapphire substrates. The effects of AlN interfacial layer on the electrical properties were investigated. At 300 K, high two-dimensional electron gas (2DEG) density of 1.66 × 1013 cm−2 and high electron mobility of 1346 cm2 V−1 s−1 were obtained for the high Al content HEMT structure with a 1 nm AlN interfacial layer, consistent with the low average sheet resistance of 287 Ω/sq. The comparison of HEMT wafers with and without AlN interfacial layer shows that high Al content AlGaN/AlN/GaN heterostructures are potential in improving the electrical properties of HEMT structures and the device performances.  相似文献   

15.
Au/GaN/n-GaAs structure has been fabricated by the electrochemically anodic nitridation method for providing an evidence of achievement of stable electronic passivation of n-doped GaAs surface. The change of the electronic properties of the GaAs surface induced by the nitridation process has been studied by means of current-voltage (I-V) characterizations on Schottky barrier diodes (SBDs) shaped on gallium nitride/gallium arsenide structure. Au/GaN/n-GaAs Schottky diode that showed rectifying behavior with an ideality factor value of 2.06 and barrier height value of 0.73 eV obeys a metal-interfacial layer-semiconductor (MIS) configuration rather than an ideal Schottky diode due to the existence of GaN at the Au/GaAs interfacial layer. The formation of the GaN interfacial layer for the stable passivation of gallium arsenide surface is investigated through calculation of the interface state density Nss with and without taking into account the series resistance Rs. While the interface state density calculated without taking into account Rs has increased exponentially with bias from 2.2×1012 cm−2 eV−1 in (Ec−0.48) eV to 3.85×1012 cm−2 eV−1 in (Ec−0.32) eV of n-GaAs, the Nss obtained taking into account the series resistance has remained constant with a value of 2.2×1012 cm−2 eV−1 in the same interval. This has been attributed to the passivation of the n-doped GaAs surface with the formation of the GaN interfacial layer.  相似文献   

16.
The formation of stable, low resistance and nonrectifying contacts to Cu2ZnSnS4 (CZTS) thin film photovoltaic material are the major and critical challenges associated with its effect over the output performance of fabricated solar cells. The solution of continuity equation in one dimension for a soda lime glass substrates (SLG) |Mo | CZTS | CdS | ZnO:Al cell structure is considered in the simulation of its current–voltage characteristics that is governed by the back contact material, acceptor concentration as well as thickness of the CZTS layer. Our primary simulation shows a 6.44% efficiency of the CZTS solar cell which is comparable to reported experimental data if these parameters are not optimized. However, by optimizing them a simulated conversion efficiency as high as 13.41% (Voc=1.002 V, Jsc=19.31 mA/cm2, fill factor (FF)=69.35%) could be achievable. The solar cell with a back contact metal work function of 5.5 eV, an absorber layer's thickness of 2.68 μm and an acceptor concentration of 5×1016 cm−3 were optimum. The presented optimization is ideal and subject to experimental verification with a precise control of the process parameters along with reduced surface as well as bulk recombination, secondary phases and thermalization losses.  相似文献   

17.
In order to study the effect of copper ion implantation on the aqueous corrosion behavior, samples of zircaloy-4 were implanted with copper ions with fluences ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc source (MEVVA) operated at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-4 in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-4 implanted with copper ions when the fluence is smaller than 5 × 1016 ions/cm2. The corrosion resistance of implanted samples declined with increasing the fluence. Finally, the mechanism of the corrosion behavior of copper-implanted zircaloy-4 was discussed.  相似文献   

18.
We demonstrated the tunable contact resistance in pentacene thin film transistor (TFT) by inserting an organic-inorganic hybrid interlayer between Au electrode and pentacene layer. The contact resistance of pentacene-TFT varies with concentration of pentacene-TFT varies with concentration of MoOx in organic-inorganic hybrid interlayer. MoOx in organic-inorganic hybrid interlayer. The contact resistance of the device with 55 wt% MoOx doped pentacene interlayer is about 7.8 times smaller than that of device without interlayer at the gate voltage of −20 V. Comparing the properties of pentacene-TFT without interlayer, the performance of the pentacene-TFT with 55 wt% MoOx doped pentacene was significantly improved: saturation mobility increased from 0.39 to 0.87 cm2/V s, threshold voltage reduced from −21.3 to −7.2 V, and threshold swing varied from 3.75 to 1.39 V/dec. Our results indicated that the organic-inorganic hybrid interlayer is an effective way to improve the performance of p-channel OTFTs.  相似文献   

19.
NbTi0.5Ni0.5O4 (NTNO) has been prepared using solid state synthesis and investigated as a potential anode material. The oxide form of NTNO has single phase rutile-type structure with tetragonal (P42/mnm) space group. The reduced form is a composite of nano-scaled particles of metallic Ni and Nb1.33Ti0.67O4 phase. Reduced NTNO showed high electronic conductivity up to 280 S.cm− 1 at 900 °C in reducing atmosphere, but suffers from low CTE equal to 3.78 10− 6 K− 1. Studies of NTNO as anode material were carried out in a three electrode - electrochemical half cell configuration under pure humidified H2 at 900 °C using a 2 mm thick zirconia electrolyte and without any additional current collector material. The results show a reasonable series resistance (Rs) equal to 2.7 Ωcm2 (about 50% higher than for metallic gold layers) indicating a good current collection performance for a 10 μm layer of material. The polarization resistance (Rp) was equal to 33 Ωcm2 and is attributed to a poor density of three phase boundaries (TPB) and shortage of oxide ion conduction in the anode layer. The results show the potential of NTNO as an anode material, especially after optimization of the microstructure towards the increase of TPB length.  相似文献   

20.
This study examines the initial performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O. Such a cell, when powered by renewable/nuclear energy, could be used to recycle CO2 into sustainable hydrocarbon fuels. Polarization curves and electrochemical impedance spectroscopy were employed to characterize the initial performance and to break down the cell resistance into the resistance for the specific processes occurring during operation. Transformation of the impedance data to the distribution of relaxation times (DRT) and comparison of measurements taken under systematically varied test conditions enabled clear visual identification of five electrode processes that contribute to the cell resistance. The processes could be assigned to each electrode and to gas concentration effects by examining their dependence on gas composition changes and temperature.This study also introduces the use of the DRT to study cell degradation without relying on a model. The durability was tested at consecutively higher current densities (and corresponding overpotentials). By analyzing the impedance spectra before and after each segment, it was found that at low current density operation (− 0.25 A/cm2 segment) degradation at the Ni/YSZ electrode was dominant, whereas at higher current densities (− 0.5 A/cm2 and − 1.0 A/cm2), the Ni/YSZ electrode continued to degrade but the serial resistance and degradation at the LSM/YSZ electrode began to also play a major role in the total loss in cell performance. This suggests different degradation mechanisms for high and low current density operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号