首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Basic electronic properties of two-dimensional electron gas (2DEG) formed at GaN/AlGaN hetero-interface in large-scale (100 mm) wafer made by metal organic chemical vapour deposition (MOCVD) have been reported and discussed. From conventional Hall measurements, highest electron mobility was found to be μe∼1680 and 9000 cm2/V s at room temperature and at ∼5 K, respectively, for sheet electron density of ns∼8×1012 cm−2. In magneto-resistance (MR) measurements carried out at 1.5 K in Hall bar sample defined by photolithography and ion implantation, very clear Schubnikov de-Haas oscillations and integer quantum Hall effect were observed in diagonal (Rxx) and off-diagonal (Rxy) resistances, respectively. In addition, a good insulating nature of GaN layer is confirmed by capacitance-voltage (C-V) measurement. These results suggest the high-qualitiness of our 100 mm GaN/AlGaN high electron mobility transistor (HEMT) wafers comparable to those so far reported.  相似文献   

2.
Au/GaN/n-GaAs structure has been fabricated by the electrochemically anodic nitridation method for providing an evidence of achievement of stable electronic passivation of n-doped GaAs surface. The change of the electronic properties of the GaAs surface induced by the nitridation process has been studied by means of current-voltage (I-V) characterizations on Schottky barrier diodes (SBDs) shaped on gallium nitride/gallium arsenide structure. Au/GaN/n-GaAs Schottky diode that showed rectifying behavior with an ideality factor value of 2.06 and barrier height value of 0.73 eV obeys a metal-interfacial layer-semiconductor (MIS) configuration rather than an ideal Schottky diode due to the existence of GaN at the Au/GaAs interfacial layer. The formation of the GaN interfacial layer for the stable passivation of gallium arsenide surface is investigated through calculation of the interface state density Nss with and without taking into account the series resistance Rs. While the interface state density calculated without taking into account Rs has increased exponentially with bias from 2.2×1012 cm−2 eV−1 in (Ec−0.48) eV to 3.85×1012 cm−2 eV−1 in (Ec−0.32) eV of n-GaAs, the Nss obtained taking into account the series resistance has remained constant with a value of 2.2×1012 cm−2 eV−1 in the same interval. This has been attributed to the passivation of the n-doped GaAs surface with the formation of the GaN interfacial layer.  相似文献   

3.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

4.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

5.
We report the realization of an AlGaN/GaN HEMT on silicon (001) substrate with noticeably better transport and electrical characteristics than previously reported. The heterostructure has been grown by molecular beam epitaxy. The 2D electron gas formed at the AlGaN/GaN interface exhibits a sheet carrier density of 8×1012 cm−2 and a Hall mobility of 1800 cm2/V s at room temperature. High electron mobility transistors with a gate length of 4 μm have been processed and DC characteristics have been achieved. A maximum drain current of more than 500 mA/mm and a transconductance gm of 120 mS/mm have been obtained. These results are promising and open the way for making efficient AlGaN/GaN HEMT devices on Si(001).  相似文献   

6.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

7.
We investigate the effect of A/N ratio of the high temperature (HT) AIN buffer layer on polarity selection and electrical quality of GaN films grown by radio frequency molecular beam epitaxy. The results show that low Al/N ratio results in N-polarity GaN films and intermediate Al/N ratio leads to mixed-polarity GaN films with poor electrical quality. GaN films tend to grow with Ga polarity on Al-rich AIN buffer layers. GaN films with different polarities are confirmed by in-situ reflection high-energy electron diffraction during the growth process. Wet chemical etching, together with atomic force microscopy, also proves the polarity assignments. The optimum value for room-temperature Hall mobility of the Ga-polarity GaN film is 703cm^2/V.s, which is superior to the N-polarity and mixed-polarity GaN films.  相似文献   

8.
Sandwich-structure Al2O3/HfO2/Al2O3 gate dielectric films were grown on ultra-thin silicon-on-insulator (SOI) substrates by vacuum electron beam evaporation (EB-PVD) method. AFM and TEM observations showed that the films remained amorphous even after post-annealing treatment at 950 °C with smooth surface and clean silicon interface. EDX- and XPS-analysis results revealed no silicate or silicide at the silicon interface. The equivalent oxide thickness was 3 nm and the dielectric constant was around 7.2, as determined by electrical measurements. A fixed charge density of 3 × 1010 cm−2 and a leakage current of 5 × 10−7A/cm2 at 2 V gate bias were achieved for Au/gate stack /Si/SiO2/Si/Au MIS capacitors. Post-annealing treatment was found to effectively reduce trap density, but increase in annealing temperature did not made any significant difference in the electrical performance.  相似文献   

9.
Metal-oxide-semiconductor (MOS) capacitors incorporating hafnium dioxide (HfO2) dielectrics were fabricated and investigated. In this work, the electrical and interfacial properties were characterized based on capacitance-voltage (C-V) and current-voltage (I-V) measurements. Thereafter the current conduction mechanism, electron effective mass (m*), mean density of interface traps per unit area and energy (), energy distribution of interface traps density and near-interface oxide traps density (NNIOT) were studied in details. The characterization reveals that the dominant conduction mechanism in the region of high temperature and high field is Schottky emission. The mean density of interface traps per unit area and energy is about 6.3 × 1012 cm−2 eV−1 by using high-low frequency capacitance method. The maximum Dit is about 7.76 × 1012 cm−2 eV−1 located at 0.27 eV above the valence band.  相似文献   

10.
Physical and electrical properties of sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate are investigated. The as-deposited films and interfacial layer formation have been analyzed by using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). It is found that directly deposited Y2O3 on n-GaAs exhibits excellent electrical properties with low frequency dispersion (<5%), hysteresis voltage (0.24 V), and interface trap density (3 × 1012 eV−1 cm−2). The results show that the deposition of Y2O3 on n-GaAs can be an effective way to improve the interface quality by the suppression on native oxides formation, especially arsenic oxide which causes Fermi level pinning at high-k/GaAs interface. The Al/Y2O3/n-GaAs stack with an equivalent oxide thickness (EOT) of 2.1 nm shows a leakage current density of 3.6 × 10−6 A cm−2 at a VFB of 1 V. While the low-field leakage current conduction mechanism has been found to be dominated by the Schottky emission, Poole-Frenkel emission takes over at high electric fields. The energy band alignment of Y2O3 films on n-GaAs substrate is extracted from detailed XPS measurements. The valence and conduction band offsets at Y2O3/n-GaAs interfaces are found to be 2.14 and 2.21 eV, respectively.  相似文献   

11.
We present numerical optimization of carrier confinement characteristics in (AlxGa1−xN/AlN)SLs/GaN heterostructures in the presence of spontaneous and piezoelectrically induced polarization effects. The calculations were made using a self-consistent solution of the Schrödinger, Poisson, potential and charge balance equations. It is found that the sheet carrier density in GaN channel increases nearly linearly with the thickness of AlN although the whole thickness and equivalent Al composition of AlxGa1−xN/AlN superlattices (SLs) barrier are kept constant. This result leads to the carrier confinement capability approaches saturation with thicknesses of AlN greater than 0.6 nm. Furthermore, the influence of carrier concentration distribution on carrier mobility was discussed. Theoretical calculations indicate that the achievement of high sheet carrier density is a trade-off with mobility.  相似文献   

12.
Comprehensive and systematic optical activation studies of Si-implanted GaN grown on sapphire substrates have been made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1×1013 to 5×1015 cm−2 at room temperature. The samples were proximity cap annealed from 1250 to 1350 °C with a 500-Å-thick AlN cap in a nitrogen environment. The results of photoluminescence measurements made at 3 K show a very sharp neutral-donor-bound exciton peak along with a sharp donor-acceptor pair peak after annealing at 1350 °C for 20 s, indicating excellent implantation damage recovery. The results also indicate the AlN cap protected the implanted GaN layer very well during high temperature annealing without creating any significant anneal-induced damage. This observation is consistent with the electrical activation results for these samples.  相似文献   

13.
Off‐state and vertical breakdown characteristics of AlGaN/AlN/GaN high‐electron‐mobility transistors (HEMTs) on high‐resistivity (HR)‐Si substrate were investigated and analysed. Three‐terminal off‐state breakdown (BVgd) was measured as a function of gate–drain spacing (Lgd). The saturation of BVgd with Lgd is because of increased gate leakage current. HEMTs with Lgd = 6 µm exhibited a specific on‐resistance RDS[ON] of 0.45 mΩ cm2. The figure of merit (FOM = BVgd2/RDS[ON]) is as high as 2.0 × 108 V2 Ω–1 cm–2, the highest among the reported values for GaN HEMTs on Si substrate. A vertical breakdown of ~1000 V was observed on 1.2 µm thick buffer GaN/AlN grown on Si substrate. The occurrence of high breakdown voltage is due to the high quality of GaN/AlN buffer layers on Si substrate with reduced threading dislocations which has been confirmed by transmission electron microscopy (TEM). This indicates that the AlGaN/AlN/GaN HEMT with 1.2 µm thick GaN/AlN buffer on Si substrate is promising candidate for high‐power and high‐speed switching device applications. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We have developed the advanced nitric acid oxidation of Si (NAOS) method to form relatively thick (5-10 nm) SiO2/Si structure with good electrical characteristics. This method simply involves immersion of Si in 68 wt% nitric acid aqueous solutions at 120 °C with polysilazane films. Fourier transform infrared absorption (FT-IR) measurements show that the atomic density of the NAOS SiO2 layer is considerably high even without post-oxidation anneal (POA), i.e., 2.28 × 1022 atoms/cm2, and it increases by POA at 400 °C in wet-oxygen (2.32 × 1022 atoms/cm2) or dry-oxygen (2.30 × 1022 atoms/cm2). The leakage current density is considerably low (e.g., 10−5 A/cm2 at 8 MV/cm) and it is greatly decreased (10−8 A/cm2 at 8 MV/cm) by POA at 400 °C in wet-oxygen. POA in wet-oxygen increases the atomic density of the SiO2 layer, and decreases the density of oxide fixed positive charges.  相似文献   

15.
We describe the structural properties and electrical characteristics of thin thulium oxide (Tm2O3) and thulium titanium oxide (Tm2Ti2O7) as gate dielectrics deposited on silicon substrates through reactive sputtering. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy, measurements. It is found that the Tm2Ti2O7 film annealed at 800 °C exhibited a thinner capacitance equivalent thickness of 19.8 Å, a lower interface trap density of 8.37 × 1011 eV−1 cm−2, and a smaller hysteresis voltage of ∼4 mV than the other conditions. We attribute this behavior to the Ti incorporated into the Tm2O3 film improving the interfacial layer and the surface roughness. This film also shows negligible degrees of charge trapping at high electric field stress.  相似文献   

16.
GaN layers and Al1−xInxN/AlN/GaN heterostructures have been studied by scanning probe microscopy methods. Threading dislocations (TDs), originating from the GaN (0 0 0 1) layer grown on sapphire, have been investigated. Using Current-Atomic Force Microscopy (C-AFM) TDs have been found to be highly conductive in both GaN and AlInN, while using semi-contact AFM (phase-imaging mode) indium segregation has been traced at TDs in AlInN/AlN/GaN heterostructures. It has been assessed that In segregation is responsible for high conductivity at dislocations in the examined heterostructures.  相似文献   

17.
ZnO films prepared from the ZnO target containing 2% AlN are transparent irrespective of radio frequency (RF) power. The obtained ZnO films have the carrier density of 3.8 × 1020 cm−3 or less and the low mobility of 5.3-7.8 cm2/(V s). In the case of 5% AlN target, ZnO films prepared at 40, 60 and 80 W are transparent, whereas ZnO films prepared at 100 and 120 W are colored. As RF power increases from 40 to 120 W, the carrier density increases straightforwardly up to 5.5 × 1020 cm−3 at 100 W and is oppositely reduced to 3.2 × 1020 cm−3 at 120 W. In the case of 10% AlN target, ZnO films prepared at 60 W or more are colored, and have the carrier density of 4 × 1020 cm−3 or less. The N-concentration in these colored films is estimated to be 1% or less. The Al-concentration in the ZnO films prepared from the 5 and 10% AlN targets is higher than 2%. The carrier density of the ZnO films containing Al and N atoms is nearly equal to that of ZnO films doped with Al atoms alone. There is no evidence in supporting the enhancement of the carrier density via the formation of N-AlxZn4−x clusters (4 ≥ x ≥ 2).  相似文献   

18.
This paper attempts to realize unpinned high-k insulator-semiconductor interfaces on air-exposed GaAs and In0.53Ga0.47As by using the Si interface control layer (Si ICL). Al2O3 was deposited by ex situ atomic layer deposition (ALD) as the high-k insulator. By applying an optimal chemical treatment using HF acid combined with subsequent thermal cleaning below 500 °C in UHV, interface bonding configurations similar to those by in situ UHV process were achieved both for GaAs and InGaAs after MBE growth of the Si ICL with no trace of residual native oxide components. As compared with the MIS structures without Si ICL, insertion of Si ICL improved the electrical interface quality, a great deal both for GaAs and InGaAs, reducing frequency dispersion of capacitance, hysteresis effects and interface state density (Dit). A minimum value of Dit of 2 × 1011 eV−1 cm−2 was achieved both for GaAs and InGaAs. However, the range of bias-induced surface potential excursion within the band gap was different, making formation of electron layer by surface inversion possible in InGaAs, but not possible in GaAs. The difference was explained by the disorder induced gap state (DIGS) model.  相似文献   

19.
利用金属有机化学气相沉积(MOCVD)设备,在蓝宝石(0001)面上外延不同生长时间AlN隔离层的AlxGa1-xN/AlN/GaN结构的高电子迁移率的晶体管(HEMT),研究了AlN隔离层厚度对HEMT材料电学性能的影响。研究发现采用脉冲法外延(PALE)技术生长AlN隔离层的时间为12 s(1 nm左右)时,HEMT材料的方块电阻最小,电子迁移率为1 500 cm2·V-1·s-1,二维电子气(2DEG)浓度为1.16×1013 cm-2。AFM测试结果表明,一定厚度范围内的AlN隔离层并不会对材料的表面形貌产生重大的影响。HRXRD测试结果表明,AlGaN/AlN/GaN具有好的异质结界面。  相似文献   

20.
The effect of Al mole fractions on the structural and electrical properties of AlxGa1−xN/GaN thin films grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si (1 1 1) substrates has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage (I-V) measurements. X-ray results revealed that the AlGaN/GaN/AlN was epitaxially grown on Si substrate. By applying Vegard's law, the Al mole fractions of AlxGa1−xN samples were found to be 0.11, 0.24, 0.30 and 0.43, respectively. The structural and morphology results indicated that there is a relatively larger tensile strain for the sample with the smallest Al mole fraction; while a smaller compressive strain and larger grain size appear with Al mole fraction equal to 0.30. The strain gets relaxed with the highest Al mole fraction sample. Finally, the linear relationship between the barrier height and Al mole fraction was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号