首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The design and development of modern technological composites for the electrical and electronic applications are highly crucial. The minitualization, performance and durability of nanocomposites are achieved by integrating the nanodielectric properties of materials. In this review article, the entire upcoming trends in the domain of nanodielectric illustrated with important applications co-related to the various fabrication techniques of integrated nanodielectric composites are provided. The factors affecting the nanodielectric due to operating electric field and material interface which exhibit the high dielectric constant, low loss and moderate breakdown voltage. The complete sketch from concept, fabrication, factors co-related and applications of nanodielectric properties with the future scope are taken into consideration for further developments.  相似文献   

2.
A conductive tip in an atomic force microscope (AFM) has extended the capability from conventional topographic imaging to electrical surface characterization. The conductive tip acts as a voltage electrode to provide stimuli and monitor electrical surface properties. In this review article, we have organized the AFM electrical techniques based on whether the electrical properties are monitored at the cantilever tip or across the sample. Furthermore, the techniques are organized based on probe detection signal. A number of acronyms are used in the literature, and the more commonly used ones are identified. The principle of each technique is described, and representative applications are presented. A better understanding of the spectrum of techniques should serve as the driver to expand the application of electrical techniques to study interdisciplinary phenomena at the nanoscale.  相似文献   

3.
SiO2/TiO2/γ-glycidoxypropyltrimethoxysilane composite materials processed by the sol-gel technique were studied for optical waveguide applications. Waveguide films with thickness more than 1.7 μm were prepared on a silicon substrate by a single-coating process and low-temperature heat treatment from these high-titanium-content composite materials. Scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal gravimetric analysis (TGA), UV-visible spectroscopy (UV-VIS), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) have been used to characterize the waveguide films. TGA curves showed that organic compounds in the composite materials would decompose in the temperature range from 200 °C to 480 °C. SEM, AFM and UV-VIS results showed that a dense, porous-free, and high transparency in the visible range waveguide film could be obtained at a low heat-treatment temperature. It was also noted that the carbon content in the film with higher titanium content heated at high temperature was evidenced by XPS. The waveguide propagation loss properties of the composite material films were also investigated and showed a dependence on the titanium molar fraction. Received: 13 June 2000 / Accepted: 21 June 2000 / Published online: 20 September 2000  相似文献   

4.
自石墨烯被发现以来,二维材料因其优异的特性获得了持续且深入的探索与发展,以石墨烯、六方氮化硼、过渡金属硫化物、黑磷等为代表的二维材料相关研究层出不穷.随着二维新材料制备与应用探索的不断发展,单一材料性能的不足逐渐凸显,研究者们开始考虑采用平面拼接和层间堆垛所产生的协同效应来弥补单一材料的不足,甚至获得一些新的性能.利用二维材料晶格结构的匹配构建异质结,实现特定的功能化,或利用范德瓦耳斯力进行堆垛,将不同二维材料排列组合,从而在体系里引入新的自由度,为二维材料的性质研究和实际应用打开了新的窗口.本文从原子制造角度,介绍了二维平面和范德瓦耳斯异质结材料的可控制备和光电应用.首先简要介绍了应用于异质结制备的常见二维材料的分类及异质结的相关概念,然后从原理上分类列举了常用的表征方法,随后介绍了平面和垂直异质结的制备方法,并对其光电性质及器件应用做了简要介绍.最后,对领域内存在的问题进行了讨论,对未来发展方向做出了展望.  相似文献   

5.
ABSTRACT

Stressed liquid crystals (SLCs) have emerged as promising tunable electro-optical materials more than a decade ago. They are optically transparent and are characterized by a giant phase modulation of the incident light (Nπ, N >> 1), fast (millisecond and shorter) electro-optical response, and a relatively low driving voltage (~1 V/μm). Surprisingly, despite their advanced electro-optical performance, these new materials did not receive due attention in the research community. One possible reason of such an inadequate interest in SLCs is the lack of the well-documented procedure describing how to actually produce these materials. This paper is aimed at the development of such a step-by-step practical guide suitable for experimentalist and engineers. The proposed technology is applied to produce and characterize SLCs. In addition, some applications of the materials are briefly discussed and a broader overview of their possible use is outlined.  相似文献   

6.
Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented:

1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds.

2) The formation of thin films by decomposing chemical compounds with ion beams.

3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned.

The present status and future prospects of these kinds of investigations will be discussed.  相似文献   

7.
Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.  相似文献   

8.
要想实现弱光探测,需要探测器具有高灵敏度。石墨烯、过渡金属硫化物、黑磷等二维材料因具有宽光谱吸收、带隙可调、高载流子迁移率等良好的光学与电学性能,广泛应用于红外探测器的制作,然而这些材料存在弱光吸收、载流子迁移率低、空气稳定性差等问题,制约了其在高灵敏度红外探测领域的应用。同单一的二维材料相比,二维材料异质结不仅具有各单一材料的特点,而且由于两种材料的结合展现出新颖的物理特性,近年来在高灵敏度红外探测领域得到了广泛研究。本文基于影响灵敏度的主要因素,分析总结了提高红外探测器灵敏度的主要策略,回顾了近几年基于二维材料异质结高灵敏度红外探测器的发展,总结了其主要性能指标,最后指出了进一步提升红外探测灵敏度所面临的挑战,从如何平衡探测器响应度与响应速度、大面积二维异质结制备、异质结界面优化利用等方面展望了如何获得综合性能良好的高灵敏度红外探测器以及实现探测器商业应用,以期对高灵敏度红外探测领域的发展提供一定的指导意见。  相似文献   

9.
Yu Xu 《中国物理 B》2022,31(11):117702-117702
III-nitride semiconductor materials have excellent optoelectronic properties, mechanical properties, and chemical stability, which have important applications in the field of optoelectronics and microelectronics. Two-dimensional (2D) materials have been widely focused in recent years due to their peculiar properties. With the property of weak bonding between layers of 2D materials, the growth of III-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality, low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices. In this progress report, the main methods for the preparation of 2D materials, and the recent progress and applications of different techniques for the growth of III-nitrides based on 2D materials are reviewed.  相似文献   

10.
Abstract

Laser-induced breakdown spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of various kinds of materials (solid, liquids, and gases) and its applications are growing rapidly and continue to extend to include a broad variety of biological materials. Its application is suited particularly for urinary stones and gallstones bulk analysis and microanalysis because investigation of the spatial distribution of matrix and trace elements can help to explain their emergence and growth. Therefore, we review the application of LIBS for the analysis of different kinds of gallstones and urinary stones. In brief, we also describe the history, fundamentals, advantages, and disadvantages of LIBS and its potential for spectrochemical analysis of gallstones and kidney stones. We also emphasize the applications of different kinds of lasers in urology, particularly the laser ablation of gallstones and urinary stones and its recent progress. We also summarize and compare the analytical figures of merits of analytical techniques that are commonly used to characterize and/or analyze stones.  相似文献   

11.
Two-dimensional (2D) MoS2 is used as a catalyst or support and has received increased research interest because of its superior structural and electronic properties compared with those of bulk structures. In this article, we illustrate the active sites of 2D MoS2 and various strategies for enhancing its intrinsic catalytic activity. The recent advances in the use of 2D MoS2-based materials for applications such as thermocatalysis, electrocatalysis, and photocatalysis are discussed. We also discuss the future opportunities and challenges for 2D MoS2-based materials, in both fundamental research and industrial applications.  相似文献   

12.
魏争  王琴琴  郭玉拓  李佳蔚  时东霞  张广宇 《物理学报》2018,67(12):128103-128103
作为一种新型的二维半导体材料,单层二硫化钼薄膜由于其优异的特性,在电子学与光电子学等众多领域具有潜在的应用价值.本文综述了我们课题组在过去几年中针对单层二硫化钼薄膜的研究所取得的进展,具体包括:在二硫化钼薄膜的制备方面,通过氧辅助化学气相沉积方法,实现了大尺寸单层二硫化钼单晶的可控生长和晶圆级单层二硫化钼薄膜的高定向外延生长;在二硫化钼薄膜的加工方面,发展了单层二硫化钼薄膜的无损转移、洁净图案化加工、可控结构相变与局域相调控的方法,为场效应晶体管等电子学器件的制备与性能优化提供了基础;在二硫化钼异质结方面,研究了二硫化钼薄膜与其他二维材料形成的异质结的电学以及光电性质,为二维材料异质结的构筑和器件特性研究提供了实验参考;在二硫化钼薄膜功能化器件与应用方面,构筑了全二维材料、亚5 nm超短沟道场效应晶体管器件,验证了单层二硫化钼对短沟道效应的有效抑制及其在5 nm工艺节点器件中的应用优势;此外,利用制备的高质量单层二硫化钼和发展的器件洁净加工技术,实现了高性能柔性薄膜晶体管的集成,获得了超高灵敏度与稳定性的非接触型湿度传感器.我们在二硫化钼薄膜的制备、加工以及器件特性研究方面所取得的进展对于二硫化钼及其他二维过渡金属硫属化合物的基础和应用研究均具有指导意义.  相似文献   

13.
Tin oxide(SnO_2) is one of the most promising transparent conducting oxide materials,which is widely used in thin film gas sensors.We investigate the dependence of the deposition time on structural,morphological and hydrogen gas sensing properties of SnO_2 thin films synthesized by dc magnetron sputtering.The deposited samples are characterized by XRD,SEM,AFM,surface area measurements and surface profiler.Also the H_2 gas sensing properties of SnO_2 deposited samples are performed against a wide range of operating temperature.The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO_2 films strongly depends on the deposition time.SEM and AFM analyses reveal that the size of nanoparticles or agglomerates,and both average and rms surface roughness is enhanced with the increasing deposition time.Also gas sensors based on these SnO_2 nanolayers show an acceptable response to hydrogen at various operating temperatures.  相似文献   

14.
Abstract

An overview of Macro-defect free cements (MDFCs) formed by the interaction between polymer and cement hydration phases at very low w/c ratios is presented. As strength is a basic demand of every construction to make more durable infrastructure. Therefore, these materials have received a lot of attention due to their very high flexural and tensile strength properties. The effect of various constituents materials such as alumina content of cement, molecular weight and degree of hydrolysis of polymers on MDFCs along with their hardened properties by using different instrumentation techniques such as- X-ray diffraction (XRD), Scanning electron microscope (SEM), Dynamic mechanical analysis (DMA), Thermal studies, Hydration studies etc. have been studied by various researches and some of them are discussed in the presented review article. Therefore, this review describes the parameters, which influences the properties of MDFCs, enhances their properties and also provide a foot print for future scope after analysing all the necessary parameters. These materials can be used as a best future oriented construction materials in comparison to other conventional materials by improving their desired properties.  相似文献   

15.
There has been a resurgence of complex oxides of late owing to their ferroelectric and ferromagnetic properties. Although these properties had been recognized decades ago, the renewed interest stems from modern deposition techniques that can produce high quality materials and attractive proposed device concepts. In addition to their use on their own, the interest is building on the use of these materials in a stack also. Ferroelectrics are dielectric materials that have spontaneous polarization in certain temperature range and show nonlinear polarization–electric field dependence called a hysteresis loop. The outstanding properties of the ferroelectrics are due to non-centro-symmetric crystal structure resulting from slight distortion of the cubic perovskite structure. The ferroelectric materials are ferroelastic also in that a change in shape results in a change in the electric polarization (thus electric field) developed in the crystal and vice versa. Therefore they can be used to transform acoustic waves to electrical signal in sonar detectors and convert electric field into motion in actuators and mechanical scanners requiring fine control. In a broader sense the ferroelectric materials can be used for pyroelectric and piezoelectric sensors, voltage tunable capacitors, infrared detectors, surface acoustic wave (SAW) devices, microactuators, and nonvolatile random-access memories (NVRAMs), including the potential production of one transistor memory cells, and applications requiring nonlinear optic components. Another set of potential applications seeks to exploit the ferroelastic properties in stacked templates where they are juxtaposed to ferromagnetic materials. Doing so would allow the control of magnetic properties with electric field, which is novel. Such templates taking advantage two or more properties acquired a new name and now goes by multiferroics. After a brief historical development, this article discusses technological issues such as growth and processing, electrical and optical properties, piezo, pyro, and ferroelectric properties, degradation, measurements methods, and application of mainly lead-zirconate-titanate (PZT = PbZr1?xTixO3). The focus on PZT stems from its large electromechanical constant, large saturation polarization and large dielectric constant.  相似文献   

16.
In this work, doped poly(p-phenylene vinylene)/zeolite composites was prepared to detect the three different chemical vapors (acetone, methanol, and n-heptane) and to investigate the effects of zeolite type, chemical vapor type, and vapor concentration based on the electrical conductivity response and selectivity properties of the sensing materials. Before blending with PPV, zeolite Y (Si/Al?=?5.1 and Na+), mordenite (Si/Al?=?18 and Na+), and 5A (LTA) (Si/Al?=?1.0 and Na+) were ion exchanged with Cu2+ at 80 % ion exchanged to prepare 80CuNaY, 80CuNaMOR, and 80CuNa5A. 80CuNaY exhibited the highest electrical conductivity response under acetone and methanol exposures while 80CuNaMOR showed the highest response in n-heptane exposure which depended on the adsorption and solubility properties of each porous material. When adding doped poly(p-phenylene vinylene) (dPPV) into the 80CuNaY matrix, the minimum detection vapor concentration decreased in acetone, methanol, and n-heptane vapors. For the selectivity, the composite between 80CuNaY and dPPV responded only in the polar vapors (acetone, methanol) whereas the composite between dPPV and 80CuNaMOR or dPPV_[90]80CuNaMOR responded only in the nonpolar vapor (n-heptane). The interactions between the sensing materials and the chemical vapors were investigated and identified by FTIR and AFM techniques.  相似文献   

17.
Molybdenum Disulfide (MoS2) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS2 has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding mechanical strength and dangling-bond free basal surface. Moreover, MoS2 has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS2 crystals introduced by various single atom dopants coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS2 are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as scanning probe microscopy (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS2 structure by isolated dopants.  相似文献   

18.
The present review gives an overview of the various reports on properties of line and planar defects in Cu(In,Ga)(S,Se)2 thin films for high‐efficiency solar cells. We report results from various analysis techniques applied to characterize these defects at different length scales, which allow for drawing a consistent picture on structural and electronic defect properties. A key finding is atomic reconstruction detected at line and planar defects, which may be one mechanism to reduce excess charge densities and to relax deep‐defect states from midgap to shallow energy levels. On the other hand, nonradiative Shockley–Read–Hall recombination is still enhanced with respect to defect‐free grain interiors, which is correlated with substantial reduction of luminescence intensities. Comparison of the microscopic electrical properties of planar defects in Cu(In,Ga)(S,Se)2 thin films with two‐dimensional device simulations suggest that these defects are one origin of the reduced open‐circuit voltage of the photovoltaic devices. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
Abstract

Carbon-based composites bring great promise for various practical applications ranging from aviation industry to advanced biomedical sensors. The interface chemistry and the ultimate conductivity of these composites are responsible for their functional applicability. The interfaces can be modified by various chemical and physical techniques. This article reviews the synthesis methods of carbon composites and discusses how the interface properties dictate their applicability.  相似文献   

20.
Rui Yu 《中国物理 B》2023,32(1):18505-018505
It is significant to develop a heterogeneous integration technology to promote the application of two-dimensional (2D) materials in silicon roadmap. In this paper, we reported a field-effect WSe2/Si heterojunction diode based on ambipolar 2D WSe2 and silicon on insulator (SOI). Our results indicate that the device exhibits a p-n diode behavior with a rectifying ratio of ~ 300 and an ideality factor of 1.37. As a photodetector, it has optoelectronic properties with a response time of 0.13 ms, responsivity of 0.045 A/W, detectivity of 4.5×1010 Jones and external quantum efficiency (EQE) of 8.9 %. Due to the ambipolar behavior of the WSe2, the rectifying and optoelectronic properties of the heterojunction diode can be modulated by the gate electrical field, enabling various potential applications such as logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits. Thanks to the process based on the mature SOI technique, our field-effect heterojunction diode should have obvious advantages in device isolation and integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号