首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The impact of interfaces and heterojuctions on the electronic and thermoelectric transport properties of materials is discussed herein. Recent progress in understanding electronic transport in heterostructures of 2D materials ranging from graphene to transition metal dichalcogenides, their homojunctions (grain boundaries), lateral heterojunctions (such as graphene/MoS2 lateral interfaces), and vertical van der Waals heterostructures is reviewed. Work on thermopower in 2D heterojunctions, as well as their applications in creating devices such as resonant tunneling diodes (RTDs), is also discussed. Last, the focus turns to work in 3D heterostructures. While transport in 3D heterostructures has been researched for several decades, here recent progress in theory and simulation of quantum effects on transport via the Wigner and non‐equilibrium Green's functions approaches is reviewed. These simulation techniques have been successfully applied toward understanding the impact of heterojunctions on transport properties and thermopower, which finds applications in energy harvesting, and electron resonant tunneling, with applications in RTDs. In conclusion, tremendous progress has been made in both simulation and experiments toward the goal of understanding transport in heterostructures and this progress will soon be parlayed into improved energy converters and quantum nanoelectronic devices.  相似文献   

2.
半导体材料的华丽家族—氮化镓基材料简介   总被引:4,自引:1,他引:3  
孙殿照 《物理》2001,30(7):413-419
GaN基氮化物材料已成功地用于制备蓝,绿,紫外光发光器件,日光盲紫外探测器以及高温,大功率微波电子器件,由于该材料具有大的禁带宽度,高的压电和热电系数,它们还有很强的其他应用潜力,诸如做非挥发存储器以及利用压电和热效应的电子器件等,在20世纪80年代末和90年代初,在GaN基氮化物材料的生长工艺上的突破引发了90年代GaN基器件,特别是光电子和高温,大功率微波器件方面的迅猛发展,文章评述了GaN基氮化物的材料特性,生长技术和相关器件应用。  相似文献   

3.
葛翠环  李洪来  朱小莉  潘安练 《中国物理 B》2017,26(3):34208-034208
Atomically thin two-dimensional(2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes(LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.  相似文献   

4.
自石墨烯被发现以来,二维材料因其优异的特性获得了持续且深入的探索与发展,以石墨烯、六方氮化硼、过渡金属硫化物、黑磷等为代表的二维材料相关研究层出不穷.随着二维新材料制备与应用探索的不断发展,单一材料性能的不足逐渐凸显,研究者们开始考虑采用平面拼接和层间堆垛所产生的协同效应来弥补单一材料的不足,甚至获得一些新的性能.利用二维材料晶格结构的匹配构建异质结,实现特定的功能化,或利用范德瓦耳斯力进行堆垛,将不同二维材料排列组合,从而在体系里引入新的自由度,为二维材料的性质研究和实际应用打开了新的窗口.本文从原子制造角度,介绍了二维平面和范德瓦耳斯异质结材料的可控制备和光电应用.首先简要介绍了应用于异质结制备的常见二维材料的分类及异质结的相关概念,然后从原理上分类列举了常用的表征方法,随后介绍了平面和垂直异质结的制备方法,并对其光电性质及器件应用做了简要介绍.最后,对领域内存在的问题进行了讨论,对未来发展方向做出了展望.  相似文献   

5.
Yu Zhang 《中国物理 B》2021,30(11):118504-118504
Magnetic two-dimensional (2D) van der Waals (vdWs) materials and their heterostructures attract increasing attention in the spintronics community due to their various degrees of freedom such as spin, charge, and energy valley, which may stimulate potential applications in the field of low-power and high-speed spintronic devices in the future. This review begins with introducing the long-range magnetic order in 2D vdWs materials and the recent progress of tunning their properties by electrostatic doping and stress. Next, the proximity-effect, current-induced magnetization switching, and the related spintronic devices (such as magnetic tunnel junctions and spin valves) based on magnetic 2D vdWs materials are presented. Finally, the development trend of magnetic 2D vdWs materials is discussed. This review provides comprehensive understandings for the development of novel spintronic applications based on magnetic 2D vdWs materials.  相似文献   

6.
Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.  相似文献   

7.
李梓维  胡义涵  李瑜  方哲宇 《中国物理 B》2017,26(3):36802-036802
In the last decade, the rise of two-dimensional(2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light–matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plasmonic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light–matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is comprehensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.  相似文献   

8.
以石墨烯为代表的二维材料因其独特的结构和优异性能而受到广泛关注。随着二维材料在无限小的方向不断发展,二维(材料)量子片逐渐引起人们极大的兴趣。二维量子片不仅保留了二维材料的本征特性,而且表现出量子限域和突出的边缘效应,为二维材料的潜在应用带来全新机遇。本文详细介绍了二维量子片的基本概念,制备现状与光学性能的研究进展,特别强调了二维量子片本征、普适和规模制备的实现及其重大意义。此外,重点关注了二维量子片的光致发光特性以及在非线性光学、固态发光器件等领域的应用。最后,分析了二维量子片的发展趋势以及面临的主要挑战。  相似文献   

9.
王建禄  胡伟达 《中国物理 B》2017,26(3):37106-037106
Two-dimensional(2D) materials, such as graphene and Mo S2 related transition metal dichalcogenides(TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials,possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor(FET) structures with ferroelectric gate dielectric construction(termed Fe FET). One type of device is for logic applications, such as a graphene and TMDC Fe FET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material Fe FET.  相似文献   

10.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with fascinating electronic energy band structures, rich valley physical properties and strong spin–orbit coupling have attracted tremendous interest, and show great potential in electronic, optoelectronic, spintronic and valleytronic fields. Stacking 2D TMDs have provided unprecedented opportunities for constructing artificial functional structures. Due to the low cost, high yield and industrial compatibility, chemical vapor deposition (CVD) is regarded as one of the most promising growth strategies to obtain high-quality and large-area 2D TMDs and heterostructures. Here, state-of-the-art strategies for preparing TMDs details of growth control and related heterostructures construction via CVD method are reviewed and discussed, including wafer-scale synthesis, phase transition, doping, alloy and stacking engineering. Meanwhile, recent progress on the application of multi-functional devices is highlighted based on 2D TMDs. Finally, challenges and prospects are proposed for the practical device applications of 2D TMDs.  相似文献   

11.
立方氮化硼薄膜的最新研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
杨杭生  聂安民  张健英 《物理学报》2009,58(2):1364-1370
立方氮化硼(cBN)作为一种在自然界中并不存在的人造材料具有优异的理化特性. 在超硬刀具、高温电子器件和光学保护膜等领域有着广泛的应用前景,已经成为材料科学的研究热点之一. 但是气相生长高质量cBN薄膜仍然还有许多难点需要攻克. 在综述近几年cBN薄膜研究所取得的一些突破性进展后,结合研究现状提出今后可能的主要研究方向. 关键词: 立方氮化硼薄膜 压缩应力 异质外延 掺杂  相似文献   

12.
Ion beam implantation has been used not only to modify some properties of the bulk materials but also to construct waveguide structures in many optical substrates by accurate control the refractive index in selected regions. This paper reviews the recent development of ion beam implantations on fabrication of two-dimensional (2D) optical waveguides, i.e., in cases of channel or ridge configurations, in diverse insulating optical materials by giving detailed fabrication methods and research progress obtained to date. Future prospects of practical applications in photonics are also discussed briefly. Another aim of this work is to show the challenging task of this field, that is, to create practical 2D waveguide devices applicable in any existing insulating optical materials.  相似文献   

13.
Mimicking biological synapses with microelectronic devices is widely considered as the first step in hardware building artificial neuromorphic networks, which is also the basis of brain-inspired neuromorphic computing. Numerous artificial neurons and synapses making up an artificial neuromorphic network have been gained wide attention due to their powerful and efficient data processing capabilities. Recently, artificial synapses, especially memristor-type and transistor-type synapses based on multifarious two-dimensional (2D) materials have been paid much attention. The unique properties of 2D materials make devices perform well in learning ability and power efficiency when mimicking synaptic behaviors, which highlights the feasibility of 2D neuromorphic devices in constructing artificial neuromorphic networks. Herein, the basic structures and principles of biological synapses are introduced, and the definitions of synaptic behaviors in synaptic electronic devices are discussed. Then, the progress of 2D memristor-type and transistor-type neuromorphic devices involving their device architecture, neuromorphic operational mechanism, and promising applications is reviewed. Finally, the future challenges of artificial synaptic devices based on 2D materials are discussed briefly.  相似文献   

14.
ZnO and ZnS, well-known direct bandgap II–VI semiconductors, are promising materials for photonic, optical, and electronic devices. Nanostructured materials have lent a leading edge to the next generation technology due to their distinguished performance and efficiency for device fabrication. As two of the most suitable materials with size- and dimensionality-dependent functional properties, wide bandgap semiconducting ZnO and ZnS nanostructures have attracted particular attention in recent years. For example, both materials have been assembled into nanometer-scale visible-light-blind ultraviolet (UV) light sensors with high sensitivity and selectivity, in addition to other applications such as field emitters and lasers. Their high-performance characteristics are particularly due to the high surface-to-volume ratios (SVR) and rationally designed surfaces. This article provides a comprehensive review of the state-of-the-art research activities in ZnO and ZnS nanostructures, including their syntheses and potential applications, with an emphasis on one-dimensional (1D) ZnO and ZnS nanostructure-based UV light emissions, lasers, and sensors. We begin with a survey of nanostructures, fundamental properties of ZnO and ZnS, and UV radiation–based applications. This is followed by detailed discussions on the recent progress of their synthesis, UV light emissions, lasers, and sensors. Additionally, developments of ZnS/ZnO composite nanostructures, including core/shell and heterostructures, are discussed and their novel optical properties are reviewed. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of ZnO and ZnS nanostructures on the current and future applications for UV light–based lasers and sensors.  相似文献   

15.
Zhongchong Lin 《中国物理 B》2022,31(8):87506-087506
As the family of magnetic materials is rapidly growing, two-dimensional (2D) van der Waals (vdW) magnets have attracted increasing attention as a platform to explore fundamental physical problems of magnetism and their potential applications. This paper reviews the recent progress on emergent vdW magnetic compounds and their potential applications in devices. First, we summarize the current vdW magnetic materials and their synthetic methods. Then, we focus on their structure and the modulation of magnetic properties by analyzing the representative vdW magnetic materials with different magnetic structures. In addition, we pay attention to the heterostructures of vdW magnetic materials, which are expected to produce revolutionary applications of magnetism-related devices. To motivate the researchers in this area, we finally provide the challenges and outlook on 2D vdW magnetism.  相似文献   

16.
17.
二维材料及其异质结在电子学、光电子学等领域具有潜在应用,是延续摩尔定律的候选电子材料.二维材料的转移对于物性测量与器件构筑至关重要.本文综述了一些具有代表性的转移方法,详细介绍了各个方法的操作步骤,并基于转移后样品表面清洁程度、转移所需时间以及操作难易等方面对各个转移方法进行了对比归纳.经典干、湿法转移技术是进行物理堆叠制备原子级平整且界面清晰范德瓦耳斯异质结的常用手段,结合惰性气体保护或在真空条件下操作还可以避免转移过程中二维材料破损和界面吸附.高效、无损大面积转移方法为二维材料异质结构建和材料本征物理化学性质测量提供了强有力的技术保障.转移技术的优化将进一步扩展二维材料在高温超导、拓扑绝缘体、低能耗器件、自旋谷极化、转角电子学和忆阻器等领域的研究.  相似文献   

18.
于远方  缪峰  何军  倪振华 《中国物理 B》2017,26(3):36801-036801
Two-dimensional(2D) materials, e.g., graphene, transition metal dichalcogenides(TMDs), and black phosphorus(BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potential in optoelectronic applications. High-performance and multifunctional devices were achieved by employing diverse designs, such as hybrid systems with nanostructured materials, bulk semiconductors and organics, forming 2D heterostructures. In this review,we mainly discuss the recent progress of 2D materials in high-responsive photodetectors, light-emitting devices and single photon emitters. Hybrid systems and van der Waals heterostructure-based devices are emphasized, which exhibit great potential in state-of-the-art applications.  相似文献   

19.
近年来,二维层状材料由于其丰富的材料体系和独特的物理化学性质而受到人们的广泛关注.后摩尔时代要求器件高度集成化,大面积、高质量的二维材料可以保证器件中结构和电子性能的连续性.要实现二维材料工业级别的规模化生产,样品的可控制备是其前提.化学气相沉积是满足上述要求的一种强有力的方法,已广泛应用于二维材料及其复合结构的生长制备.但是要实现多种二维材料大尺寸以至晶圆级的批量制备仍然是很困难的,因此,需要进一步建立对各种二维材料生长控制的系统认识.本文基于材料生长机理分析了化学气相沉积反应中的物质运输、成核、产物生长过程对二维材料尺寸的影响,以及如何通过调控这些过程实现二维材料大面积薄膜的可控制备.通过对目前研究成果的总结分析,讨论了如何进一步实现二维材料的高质量大面积制备.  相似文献   

20.
王枫秋 《中国物理 B》2017,26(3):34202-034202
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional(2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches(or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号