首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to outstandingly tunable optoelectronic properties, hybrid materials consisting of atomic scale thickness of two dimensional (2D) transition metal dichalcogenides (TMDs) and one dimensional (1D) nanowires have been attracting steady interests over the last several years. In this research for the first time we report optically probing the interaction between monolayer MoS2 and single-wall carbon nanotube (SWCNT). By using Raman and photoluminescence measurements, we found the charge transfer between MoS2 and SWCNT is sensitive to the intensity of light field. We also demonstrate that SWCNT acts as p-type dopants at physical contact with monolayer MoS2. Our study gives new insight into the interaction between monolayer MoS2 and SWCNT, which may allow new phenomena and ideas for novel low dimensional hybrid materials.  相似文献   

2.
The electronic structures of a MoS2 monolayer are investigated with the all-electron first principle calculations based on the density functional theory (DFT) and the spin-orbital couplings (SOCs). Our results show that the monolayer MoS2 is a direct band gap semiconductor with a band gap of 1.8 eV. The SOCs and d-electrons in Mo play a very significant role in deciding its electronic and optical properties. Moreover, electronic elementary excitations are studied theoretically within the diagrammatic self-consistent field theory. Under random phase approximation, it shows that two branches of plasmon modes can be achieved via the conduction-band transitions due to the SOCs, which are different from the plasmons in a two-dimensional electron gas and graphene owing to the quasi-linear energy dispersion in single-layer MoS2. Moreover, the strong optical absorption up to 105 cm-1 and two optical absorption edges I and II can be observed. This study is relevant to the applications of monolayer MoS2 as an advanced photoelectronic device.  相似文献   

3.
Molybdenum disulfide nanoflakes (MoS2) are superior material for their semiconducting properties. For bulk and monolayer MoS2 the band gap changes from indirect-to-direct, respectively. So, it exhibits promising prospects in the applications of optoelectronics and valleytronics, such as solar cells, transistors, photodetectors, etc. In this research, the influence of different Ar flow rates as the carrier gas, is investigated for growing MoS2 nanoflakes on silicon substrates using one-step thermal chemical vapor deposition by simultaneously evaporating of solid sources like sulfur and molybdenum trioxide powders. The structural and optical properties of the obtained nanoflakes are assessed by using X-ray diffraction pattern, scanning electron microscopy, UV–visible absorption, photoluminescence and Raman spectroscopy. It is shown that, Ar gas flow rate is strongly affects on the final products as few-layer MoS2 structures. Moreover, the abundance of MoS2 in comparison to MoO2 and MoO3 structures, in the obtained nanoflakes, is influenced by the Ar flow rate.  相似文献   

4.
Yan-Rong Zhu  Ting-Feng Yi 《Ionics》2016,22(10):1759-1774
High-voltage spinel LiNi0.5Mn1.5O4 has been considered one of the most promising cathode materials for lithium-ion power batteries used in electrical vehicles (EVs) or hybrid electrical vehicles (HEVs) because the high voltage plateau at around 4.7 V makes its energy density (658 Wh kg?1) 30 and 25 % higher than that of conventional pristine spinel LiMn2O4 (440 Wh kg?1) or olivine LiFePO4 (500 Wh kg?1) materials, respectively. Unfortunately, LiNi0.5Mn1.5O4-based batteries with LiPF6-based carbonate electrolytes always suffer from severe capacity deterioration and poor thermostability because of the oxidization of organic carbonate solvents and decomposition of LiPF6, especially at elevated temperatures and water-containing environment. The major goal of this review is to highlight the recent advancements in the development of advanced electrolytes for improving the cycling stability and rate capacity of LiNi0.5Mn1.5O4-based batteries. Finally, an insight into the future research and further development of advanced electrolytes for LiNi0.5Mn1.5O4-based batteries is discussed.  相似文献   

5.
MoS2 and WS2 layered transition-metal dichalcogenides are indirect band gap semiconductors in their bulk forms. Thinned to a monolayer, they undergo a transition and become direct band gap materials. Layered structures of that kind can be folded to form nanotubes. We present here the electronic structure comparison between bulk, monolayered and tubular forms of transition metal disulfides using first-principle calculations. Our results show that armchair nanotubes remain indirect gap semiconductors, similar to the bulk system, while the zigzag nanotubes, like monolayers, are direct gap materials, what suggests interesting potential applications in optoelectronics.  相似文献   

6.
In this work, the photocatalyst composed of ultrathin MoS2 nanosheets onto the surface of cubic CdS nanoparticles with an average diameter of 7~10 nm has been successfully fabricated through a facile and mild photodeposition route. The ultrathin MoS2 nanosheets as a cocatalyst were demonstrated to greatly boost photocatalytic H2 evolution over cubic CdS upon visible light irradiation. It was clearly revealed that both the cubic CdS substrate and structure of ultrathin MoS2 nanosheets play critical roles in the observed efficient H2 evolution. The cubic CdS offers a strong adherence for ultrathin MoS2 nanosheets to form a well contact interface, across which the photogenerated charge transfer and charge separation are achieved. The ultrathin MoS2 nanosheets introduce a high density of unsaturated active S atoms for H2 evolution.  相似文献   

7.
The surface plasmon polaritons (SPPs) in monolayer MoS2 nanostructures are theoretically investigated in detail. Our study shows that the strong SPPs are induced in gigahertz (GHz) frequency range. The frequencies of SPPs are very sensitive on the substrates in the nanostructures. Moreover, the frequency of such SPPs can be controlled by varying the electron densities. Our study can be applied to understand the recent experimental results and is relevant to the applications of plasmonic nano-devices based on MoS2.  相似文献   

8.
Embedding alkali-metal in monolayer MoS2 has been investigated by using first principles with density functional theory. The calculation of the electronic and optical properties indicates that alkali-metal was embedded in monolayer MoS2 appearing almost metallic behavior, and the MoS2 layer shows clear p-type doping behavior. The covalent bonding appears between the alkali-metal atoms and defective MoS2. More importantly, embedding alkali-metal can increase the work function for monolayer MoS2. Furthermore, the absorption spectrum of monolayer MoS2 is red shifted because of alkali metal embedding. Accordingly, this study will provide the theoretical basis for producing the alkali-metal-doped monolayer MoS2 radiation shielding and photoelectric devices.  相似文献   

9.
MoS2 quantum dots (QDs) have been obtained in colloidal suspensions by 532 nm laser ablation (7 ns fwhp/pulse, 50 mJ/pulse) of commercial MoS2 particles in acetonitrile. High-resolution transmission electron microscopy images show a lateral size distribution from 5 to 20 nm, but a more homogeneous particle size of 20 nm can be obtained by silica gel chromatography purification in acetonitrile. MoS2 QDs obtained by laser ablation are constituted by 3–6 MoS2 layers (1.8–4 nm thickness) and exhibit photoluminescence whose λPL varies from 430 to 530 nm depending on the excitation wavelength. As predicted by theory, the confinement effect and the larger periphery in MoS2 QDs increasing the bandgap and having catalytically active edges are reflected in an enhancement of the photocatalytic activity for H2 generation upon UV–Vis irradiation using CH3OH as sacrificial electron donor due to the increase in the reduction potential of conduction band electrons and the electron transfer kinetics.  相似文献   

10.
Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.  相似文献   

11.
Molybdenum disulfide hybridized with graphene nanoribbon (MoS2/GNR) was prepared by mild method. MoS2/GNR hybrids interlace loosely into a three-dimension structure. GNR hybridization can improve the dispersity of MoS2, reduce the grain size of MoS2 to 3–6 nm, increase the specific surface area, and broaden the interlamellar spacing of MoS2 (002) plane to 0.67–0.73 nm, which facilitates the transportation of Li+ ions for lithium-ion battery. MoS2/GNR hybrids have better cyclic durability, higher specific discharge capacity, and superior rate performance than MoS2. The electrocatalytic activity in hydrogen evolution reaction shows that MoS2/GNR hybrids have the lower overpotential and the larger current density with a negligible current loss after 2000 cycles. Hybridizing with GNRs enhances both the lithium-ion electrochemical storage and the electrocatalytic activity of MoS2.
Graphical abstract MoS2/GNR hybrid prepared by a mild method is interlaced loosely into a three-dimension structure. Superior electrochemical performances of MoS2/GNR hybrids than MoS2 have been highlighted for the potential application for long- term durability energy-storage devices and HER electrocatalytic materials.
  相似文献   

12.
The capacity loading per unit area is of importance as specific capacity while evaluating the lithium‐ion battery anode. However, the low conductivity of several advanced anode materials (such as molybdenum sulfide, MoS2) prohibits the wide application of materials. Nanostructural engineering becomes a key to overcome the obstacles. A one‐step in situ conversion reaction is employed to synthesize molybdenum oxide (MoO2)–MoS2 core–shell nanoarchitectures (MoO2@MoS2) by partially sulfiding MoO2 into MoS2 using sulfur. The MoO2@MoS2 displays a 3D architecture constructed by hundreds of MoS2 ultrathin sheets with several layers arranged and fixed to an MoO2 particle vertically with the size in the range of 200–500 nm. MoO2 acts as the molybdenum source for the synthesis of MoS2, as well as the conductive substrate. The designed 3D architectures with empty space between MoS2 layers can prevent the damage originated from volume change of MoS2 undergoing charge/discharge process. The lithium storage capacities of the MoO2@MoS2 3D architectures are higher and the stability has been significantly improved compared to pure MoS2. 4 mAh cm?2 capacity loading of MoO2@MoS2 has been achieved with a specific capacity of more than 1000 mAh g?1.  相似文献   

13.
Regular hexagonal MoS2 microflakes with high yield were grown from MoO3 precursor by a sulfurization process using S powders as sulfuration reducer. The precursors, long and smooth MoO3 microbelts, were synthesized through a direct oxidation reaction of Mo plates in air. X-ray powder diffraction and scanning electron microscopy revealed that the sulfurized products were hexagonal MoS2 with regular hexagonal flake-like morphology. The results of transmission electron microscopy examinations demonstrated that the microflakes were single crystalline MoS2. Elemental analysis by EDAX and XPS showed that the microflakes consist of Mo and S with the atomic ratio near to 0.5. Factors influencing the formation of the product were systematically studied. PACS 81.15.Gh; 81.15.Kk; 81.05.Hd; 78.67.Pt; 82.40.Ck  相似文献   

14.
Molybdenum disulfide (MoS2) nanosheets are a promising lubricant additive for enhanced engine efficiency in cars. However, high-cost production methods and poor dispersion have limited their application in industry. In this study, the ball milling process is demonstrated as a low-cost and high-efficient method for fabrication of oil-dispersible MoS2 nanosheet, and the ball milling parameters are optimized. Moreover, the lubrication effectiveness of ball-milled MoS2 nanosheet was also evaluated. Results indicated that well-dispersed MoS2 nanosheets with a size of 250 nm can be manufactured with optimized surfactants of zinc dialkyldithiphosphates (ZDDP) and polyisobutylene succinimide (PIBS) after being ball milled for 36 h. Tribological results revealed that a friction coefficient of white oil with 0.25% MoS2 nanosheets reached 0.075, much lower than that of lubricant without nanosheets (0.16). The wear scar radius of 0.015% MoS2 nanosheets was similar with that of Hertz contact, and the wear scar radius reduction reached 20% compared with that of 1% ZDDP. In addition, EDS and XPS results indicated the formation of a MoS2 and FeS tribofilm on the wear surface.  相似文献   

15.
Flower-like MoS2 supported on three-dimensional graphene aerogel (MoS2/GA) composite has been prepared by a facile hydrothermal method followed by subsequent heat-treatment process. Each of MoS2 microflowers is surrounded by the three-dimensional graphene nanosheets. The MoS2/GA composite is applied as an anode material of sodium-ion batteries (SIBs) and it exhibits high initial discharge/charge capacities of 562.7 and 460 mAh g?1 at a current density of 0.1 A g?1 and good cycling performance (348.6 mAh g?1 after 30 cycles at 0.1 A g?1). The good Na+ storage properties of the MoS2/GA composite could be attributed to the unique structure which flower-like MoS2 are homogeneously and tightly decorated on the surface of three-dimensional graphene aerogel. Our results demonstrate that as-prepared MoS2/GA composite has a great potential prospect as anodes for SIBs.  相似文献   

16.
First-principles calculation was used to study the interfacial properties of theSrRuO3 (1 1 1)/MoS2(√3 × √3) heterojunction. It is found that the huge magneticmoments in of monolayer MoS2 largely originate from the Ru-S hybridization for theRu-terminated interface. Moreover, for the SrO-terminated interface, we studied mainly themetal and semiconductor contact characteristic. The calculated results show that theSchottky barrier height can be significantly reduced to zero for the SrO-terminatedinterface. Schottky barrier heights dominate the transport behavior of theSrRuO3/MoS2 interface. Our results not only have potentialapplications in spintronics devices, but also are in favour of the scaling of field effecttransistors.  相似文献   

17.
二维辉钼材料及器件研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
赖占平 《物理学报》2013,62(5):56801-056801
经过几十年的发展, 集成电路的特征尺寸将在10–15年内达到其物理极限, 替代材料的研究迫在眉睫. 石墨烯曾被寄予厚望, 但由于其缺乏带隙限制了在数字电路领域的应用. 近年来, 单层及多层辉钼材料由于具有优异的半导体性能, 有可能超过石墨烯成为硅的替代者而引起了微纳电子领域的广泛关注. 本文对近二年国际上辉钼半导体器件研制、辉钼半导体材料的性能 表征及制备方法研究等方面的进展进行了综述, 并对大面积单层材料的研制提出了值得关注的方向. 关键词: 2')" href="#">MoS2 辉钼材料 纳米材料 集成电路  相似文献   

18.
We report about results from density functional based calculations on structural, electronic and transport properties of one-dimensional MoS2 nanoribbons with different widths and passivation of their edges. The edge passivation influences the electronic and transport properties of the nanoribbons. This holds especially for nanoribbons with zigzag edges. Nearly independent from the passivation the armchair MoS2 nanoribbons are semiconductors and their band gaps exhibit an almost constant value of 0.42 eV. Our results illustrate clearly the edge priority on the electronic properties of MoS2 nanoribbons and indicate problems for doping of MoS2 nanoribbons.  相似文献   

19.
Apart from unique properties of layered transition‐metal dichalcogenide nanosheets like MoS2, quantum dots (QDs) from these layered materials promise novel science and applications due to their quantum confinement effect. However, the reported fabrication techniques for such QDs all involve the use of liquid organic solvents and the final material extraction from such liquid dispersions. Here a novel and convenient dry method for the synthesis of MoS2 quantum dots interspersed on few‐layer MoS2 using soft hydrogen plasma treatment followed by post‐annealing is demonstrated. The size of MoS2 nanodots can be well controlled by adjusting the working pressure of hydrogen plasma and post‐thermal annealing. This method relies on the cumulative hydrogen ion bombardment effect which can destroy the hexagonal structure of the top MoS2 layer and disintegrate the top layer into MoS2 nanodots and even QDs. Post‐thermal annealing can further reduce the size. Such MoS2 quantum dots interspersed on few‐layer MoS2 exhibit two new photoluminescence peaks at around 575 nm because of the quantum confinement effect. This dry method is versatile, scalable, and compatible with the semiconductor manufacturing processes, and can be extended to other layered materials for applications in hydrogen evolution reaction, catalysis, and energy devices.  相似文献   

20.
The rise of two-dimensional (2D) material is one of the results of successful efforts of researchers which laid the path to the new era of electronics. One of the most exciting materials is MoS2. Synthesis has been always a major issue as electronic devices need reproducibility along with similar properties for mass productions. Chemical vapor deposition (CVD) is one of the successful methods for 2D materials including graphene. Furthermore, the choice of starting materials for Mo and S source is crucial. The different source has different effects on the layers and morphology of MoS2 films. In this work, we have extensively studied the CVD technique to grow few layers of MoS2 with two precursors MoO3 and MoCl5, show remarkable changes. The MoO3 source gives a triangular shaped MoS2 monolayer while that of MoCl5 can achieve uniform MoS2 without triangle. The absence of geometric shapes with MoCl5 is poorly understood. We tried to explain with MoCl5 precursor, the formation of continuous monolayer of MoS2 without any triangle on the basis of chemical reaction formalism mostly due to one step reaction process and formation of MoS2 from gas phase to the solid phase. The film synthesized by MoCl5 is more continuous and it would be a good choice for device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号