首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
In this contribution, high‐throughput screening experiments are reported to study the polymerization of different aromatic polyurethane (PU) prepolymers. The prepared prepolymers were synthesized from toluene diisocyanate (T80) with different molar mass polyether diols and polyether triols, respectively. The reactions were performed in solution using a Chemspeed Accelerator? SLT106 automated parallel synthesizer as well as in bulk to evaluate the high‐throughput approach for this kind of prepolymers. More than 100 samples were prepared and characterized by GPC within 1 week labor time to investigate the reaction kinetics and to compare the resulting trends obtained by high‐throughput experimentation (HTE) or by conventional, bulk prepolymerization. The synthesis of the prepared prepolymers with a linear (T80‐Diol) or a branched (T80‐Triol) structure followed a second‐order kinetic in solution but showed deviation from this phenomenon in bulk under the selected reaction conditions, although the same trends are observed in both cases. The calculation of the rate constants allowed comparing the reactivity of different prepolymer systems, which could have a significant influence on the industrial application and processing of these materials. As a result, the HTE approach was found to represent a powerful tool for the kinetic studies of PU prepolymers. Moreover, in spite of the complexity of the curing process, the results obtained by high‐throughput solution polymerization can be applied for evaluating the bulk polymerization. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 570–580, 2010  相似文献   

2.
High‐throughput experimentation (HTE) represents a promising and versatile approach for polyurethane (PU) research as a tool to screen and characterize a large number of samples in an automated way. For the realization of a HTE workflow for PUs, the use of a Chemspeed Accelerator? SLT106 automated parallel synthesizer was explored. To evaluate the possibility of these techniques for PUs, we studied the synthesis of prepolymers from isophorone diisocyanate and polypropylene glycol in mass and solution. Several optimization steps, transfer to solution polymerization, and downscaling prepolymerizations have been carried out in a manual way before implementing them into the Chemspeed Accelerator?. As a next step, reproducibility investigations and kinetic studies were performed in an automated manner. All experiments were evaluated by characterization with gel permeation chromatography, MALDI–TOF mass spectrometry and 1H NMR spectroscopy. These results provide a basis to use the HTE technique for screening different PU prepolymers in the future. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3729–3739, 2009  相似文献   

3.
The effect of side methyl and dimethyl groups of the soft segment component on the microphase‐separated structure and mechanical properties of polyurethane elastomers (PUEs) was investigated. Poly(oxytetramethylene) glycol (PTMG), and PTMG incorporating dimethyl groups (PTG‐X) and methyl side groups (PTG‐L) were used as a polymer glycol, which forms a soft segment in the PUEs. The PUEs were synthesized with 4,4′‐dipheylmethane diisocyanate [1,1′‐methylenebis(4‐isocyanatobenzene)], 1,4‐butane diol, and 1,1,1‐trimethylol propane by a prepolymer method. The degree of microphase separation of the PUEs became weaker with increasing side group content in polymer glycols. Dynamic viscoelastic properties measurement showed reorganized‐crystallization and melting of the soft segment for the PUEs based on PTMG, PTG‐L, and PTG‐X with a lower content of the side groups, but not for a PTG‐L and PTG‐X with higher content of the side groups. Tensile testing revealed that increasing methyl group concentration made the PUEs soften and weaken. The PTMG‐based PUEs obviously exhibited strain‐induced crystallization of the soft segment chains during elongation process. In contrast, for the PTG‐L and PTG‐X‐based PUEs, crystallinity decreased with increasing side group content, and the PUEs with PTG‐L and PTG‐X with highest methyl group content did not crystallize even at a large strain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2054–2063, 2008  相似文献   

4.
The calcium salt of mono(hydroxyethoxyethyl)phthalate [Ca(HEEP)2] was synthesized by the reaction of diethylene glycol, phthalic anhydride, and calcium acetate. Calcium‐containing poly(urethane ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI) with a mixture of Ca(HEEP)2 and poly(ethylene glycol) (PEG300 or PEG400) with di‐n‐butyltin dilaurate as a catalyst. A series of calcium‐containing PUEs of different compositions were synthesized with Ca(HEEP)2/PEG300 (or PEG400)/diisocyanate (HMDI or TDI) molar ratios of 2:2:4, 3:1:4, and 1:3:4 so that the coating properties of the PUEs could be studied. Blank PUEs without calcium‐containing ionic diols were also prepared by the reaction of PEG300 or PEG400 with HMDI or TDI. The PUEs were well characterized by Fourier transform infrared, 1H and 13C NMR, solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR, viscosity, solubility, and X‐ray diffraction studies. The thermal properties of the polymers were also studied with thermogravimetric analysis and differential scanning calorimetry. The PUEs were applied as top coats on acrylic‐coated leather, and their physicomechanical properties were also studied. The coating properties of PUEs, such as the tensile strength, elongation at break, tear strength, water vapor permeability, flexing endurance, cold crack resistance, abrasion resistance, color fastness, and adhesive strength, were better than the standard values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2865–2878, 2003  相似文献   

5.
Randomly copolymerized poly(carbonate) glycols were employed as starting materials for the synthesis of polyurethane elastomers (PUEs). The poly(carbonate) glycols had hexamethylene (C6) and tetramethylene (C4) units between carbonate groups in various composition ratios (C4/C6 = 0/100, 50/50, 70/30, and 90/10), and the number‐average molecular weights of these poly(carbonate) glycols were 1000 and 2000. The PUEs were synthesized with these poly(carbonate) glycols, 4,4′‐diphenylmethane diisocyanate, and 1,4‐butanediol by a prepolymer method. Differential scanning calorimetry measurements revealed that the difference between the glass‐transition temperature of the soft segment in the PUEs and the glass‐transition temperature of the original glycol polymer decreased and the melting point of the hard‐segment domain increased with an increasing C4 composition ratio. The microphase separation of the poly(carbonate) glycol‐based PUEs likely became stronger with an increasing C4 composition ratio. Young's modulus of these PUEs increased with an increasing C4 composition ratio. This was due to increases in the degree of microphase separation and stiffness of the soft segment with an increase in the C4 composition ratio. The molecular weight of poly(carbonate) glycol also influenced the microphase‐separated structure and mechanical properties of the PUEs. The addition of different methylene chain units to poly(carbonate) glycol was quite effective in controlling the microphase‐separated structure and mechanical properties of the PUEs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4448–4458, 2004  相似文献   

6.
We successfully prepared a series of transparent materials with semi‐interpenetrating polymer networks (semi‐IPNs) from castor‐oil‐based polyurethane (PU) and benzyl starch (BS). The miscibility, morphology, and properties of the semi‐IPN films were investigated with attenuated total reflection/Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, scanning electron microscopy, wide‐angle X‐ray diffraction, electron spin resonance (ESR), ultraviolet–visible spectroscopy, and tensile testing. The results revealed that the semi‐IPN films had good or certain miscibility with BS concentrations of 5–70 wt % because of the strong intermolecular interactions between PU and BS. With an increase in the concentration of BS, the tensile strength and Young's modulus of the semi‐IPN materials increased. The ESR data confirmed that the segment volume of PU in the semi‐IPNs increased with the addition of BS; that is, the chain stiffness increased as a result of strong interactions between PU and BS macromolecules. It was concluded that starch derivatives containing benzyl groups in the side chains more easily penetrated the PU networks to form semi‐IPNs than those containing aliphatic groups, and this led to improved properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 603–615, 2005  相似文献   

7.
Fullerenol polyurethane (C60‐PU) and linear polyurethane (linear‐PU) modified phenolic resins were prepared in this study. Phenolic resin/C60‐PU and phenolic resin/linear‐PU blends show good miscibility as a result of the intermolecular hydrogen bonding existing between phenolic resin and PU modifiers. DSC and thermogravimetric analysis methods were used to study the thermal properties of phenolic resin blended with different types of PUs. The intermolecular hydrogen bonding that existed between phenolic resin and C60‐PU was investigated by Fourier transform infrared spectroscopy. The morphology and mechanical properties of phenolic resin/C60‐PU and phenolic resin/linear‐PU blends were also investigated. The char yield of the modified phenolic resins decreased with increasing PU modifier content. Significant improvement in the toughness of the modified phenolic resins was observed. The improvements of impact strength were 27.4% for the phenolic resin/linear‐PU system and 54.3% for the phenolic resin/C60‐PU system, respectively, both with 3 phr linear‐PU and C60‐PU content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2436–2443, 2001  相似文献   

8.
Novel linear homogeneous polyurethanes and polyureas with enhanced hydrophilic character have been successfully prepared from sugar‐based monomers having their hydroxyl groups free or partially protected. By the reaction of primary hydroxyl groups of xylitol with dimethyl hexamethylene dicarbamate (HMDC) or di‐tert‐butyl‐4,4′‐diphenyl methyl dicarbamate (MDC), two new linear semicrystalline polyurethanes [PU(X‐HMDC) and PU(X‐MDC)] have been prepared. Likewise, by the reaction of xylitol with the analogous diisocyanates hexamethylene diisocyanate (HMDI) or 4,4′‐methylenebis(phenyl isocyanate) (MDI), similar polyurethanes [PU(X‐HMDI) and PU(X‐MDI)] were obtained. However, these latter polyurethanes present some degree of crosslinking because of the higher reactivity of the diisocyanate comonomers. Linear hydrophilic polyureas having free hydroxyl groups joined to the main chain have also been prepared by the reaction of the same diisocyanates (HMDI and MDI) with 1,6‐diamino‐1,6‐dideoxy‐D ‐mannitol and 1,6‐diamino‐1,6‐dideoxy‐3:4‐O‐isopropylidene‐D ‐mannitol. As far as we are aware, this kind of polyhydroxylated polyurea has not been previously described in the literature. The new polymers were characterized by standard methods (elemental analyses, gel permeation chromatography, IR, and NMR). The polyurethanes were hydrolytically degradable under physiological conditions, in contrast with less‐hydrophilic linear polyurethanes previously described. The thermal properties of the novel polymers were investigated by thermogravimetric analysis and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A series of novel poly(urethane amide) films were prepared by the reaction of a polyurethane (PU) prepolymer and a soluble polyamide (PA) containing aliphatic hydroxyl groups in the backbone. The PU prepolymer was prepared by the reaction of polyester polyol and 2,4‐tolylenediisocyanate and then was end‐capped with phenol. Soluble PA was prepared by the reaction of 1‐(m‐aminophenyl)‐2‐(p‐aminophenyl)ethanol and terephthaloyl chloride. The PU prepolymer and PA were blended, and the clear, transparent solutions were cast on glass substrates; this was followed by thermal treatments at various temperatures to produce reactions between the isocyanate group of the PU prepolymer and the hydroxyl group of PA. The opaque poly(urethane amide) films showed various properties, from those of plastics to those of elastomers, depending on the ratio of the PU and PA components. Dynamic mechanical analysis showed two glass‐transition temperatures (Tg's), a lower Tg due to the PU component and a higher Tg due to the PA component, suggesting that the two polymer components were phase‐separated. The rubbery plateau region of the storage modulus for the elastic films was maintained up to about 250 °C, which is considerably higher than for conventional PUs. Tensile measurements of the elastic films of 90/10 PU/PA showed that the elongation was as high as 347%. This indicated that the alloying of PU with PA containing aliphatic hydroxyl groups in the backbone improved the high‐temperature properties of PU and, therefore, enhanced the use temperature of PU. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3497–3503, 2002  相似文献   

10.
Segmented polyurethanes (PU) with crystalline soft segments were prepared with different crystalline polyols as soft segments. Morphology and microstructure of the PUs were investigated using Differential Scanning Calorimetry (DSC), Wide‐angle X‐ray Diffraction (WAXD), and Positron Annihilation Lifetime Spectra (PALS). Water vapor transport properties of the PU membranes were measured in the temperature range of crystal melting of their soft segments. Dependence of free volume of the PUs on temperature and the relationship between the free volume and water vapor permeability of the PU membranes were investigated. The results show that the mean free volume size and fractional free volume increase more rapidly in the temperature range of crystal melting than in other temperature intervals. In the specified temperature range, water vapor permeability of the polyester based PU membranes increases significantly, caused by the steep increase in free volume, due to crystal melting of the soft segments. Water vapor permeability of the polyester based PUs exhibits approximately direct correlation with the fractional free volume within the temperature range of crystal melting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1865–1872, 2005  相似文献   

11.
Although amphiphilicity is an integral component for the applications of polyHIPEs (PHs), it is challenging to produce hydrophobic PHs from hydrophilic monomers. Herein, hydrophobic polyurethane (PU) PHs have been fabricated from a water‐soluble mannitol within block copolymer surfactant‐stabilized, nonaqueous high internal phase emulsions (HIPEs). These highly porous, interconnected, macroporous PU PHs were hydrophobic with water contact angles between 102° and 140°, demonstrating that water‐soluble monomers could be used for fabrication of hydrophobic PHs. The block copolymer surfactant acted not only as the HIPE stabilizer, but also as a monomer, enhancing hydrophobicity and overcoming some drawbacks imposed by conventional inert stabilizers. The solvents used for PU PH synthesis and purification were easily recovered and reused, showing that nonaqueous HIPE templating for PU PH preparation is an efficient and facile route. The PU PHs were investigated for oil spill reclamation and they were demonstrated to be an ideal candidate for such an application. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1315–1321  相似文献   

12.
A series of poly(ethylene glycol)–polyurethane (PEG–PU)/sodium perchlorate (NaClO4) solid electrolytes were prepared, and their properties were characterized with Fourier transform infrared spectroscopy, differential scanning calorimetry, complex impedance analysis, and atomic force microscopy. Results showed that the oxygen atoms of carbonyl and ether oxygen groups had different activities on cations. Both carbonyl and ether oxygen groups participated in the ionic‐transport process in PU‐based electrolytes. There existed a coordination competition between sodium cations and different oxygen atoms in soft and hard segments of PU. For the PEG–PU/NaClO4 system investigated, amorphous regions and interfacial regions between the amorphous and microcrystalline phases were responsible for ionic conduction. A new ionic‐transport mechanism, based on the existence of conduction pathways not only in amorphous regions but also in interfacial regions of microphase‐separated PU‐based electrolytes, is sketched. Moreover, at a particular concentration of doped salt (EO/NaClO4 12), the PEG–PU/NaClO4 complex revealed a phase‐transition point in the morphology and exhibited minimum apparent activation energy and maximum ionic conductivity. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1246–1254, 2001  相似文献   

13.
We describe the synthesis, characterization, and select properties of a novel polyurethane (PU) prepared using a new polyisobutylene diol, HO‐CH2CH2‐S‐PIB‐S‐CH2CH2‐OH, soft segment and conventional hard segments. The diol is synthesized by terminal functionalization of ally‐telechelic PIB followed by low‐cost thiol‐ene click chemistry. Properties of ‐S‐ containing PU (PIBS‐PU) containing 72.5% PIB were investigated and compared to similar PUs made with HO‐PIB‐OH (PIBO‐PU). Hydrolytic resistance was studied by contact with phosphate‐buffered saline, oxidative resistance by immersing in concentrated HNO3, and metal ion oxidation resistance by exposure to CoCl2/H2O2. Hydrolytic and oxidative resistances of PIBS‐PU and PIBO‐PU are similar and superior to a commercial PDMS‐based PU, Elast‐Eon? E2A. According to 1H NMR spectroscopy the ‐S‐ in PIBS‐PUs remained unchanged upon treatment with HNO3, however, oxidized mainly to ‐SO2‐ by CoCl2/H2O2. Static mechanical properties of PIBS‐PU and PIBO‐PU are similar, except creep resistance of PIBS‐PU is surprisingly superior. The thermal stability of PIBS‐PUs is ~15 °C higher than that of PIBO‐PU. FTIR spectroscopy indicates H bonded S atoms (N‐H…S) between soft and hard segments, which noticeably affect properties. DSC and XRD studies suggest random low‐periodicity crystals dispersed within a soft matrix. Energy dispersive X‐ray spectroscopy–scanning electron microscopy indicates homogeneous distribution of S atoms on PIBS‐PU surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1119–1131  相似文献   

14.
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000  相似文献   

15.
A novel intumescent gel‐silica/ammonium polyphosphate core‐shell flame retardant (MCAPP), which contains silicon, phosphorus, and nitrogen, has been prepared by in situ polymerization. The structure of MCAPP was characterized by Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS). The properties of MCAPP were investigated by water solubility, hydrophilicity, and morphological determination. The flame retardancy and thermal stability of polyurethane (PU) composite with MCAPP were evaluated by limiting oxygen index (LOI), UL‐94 test, cone calorimetry, and thermogravimetric analysis (TGA). The results showed that MCAPP could decrease the heat release rate (HRR) and increase the thermal stability of PU materials greatly. Finally, water‐resistant properties of PU/FR composites were also studied. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Polyethylene terephthalates (PETs) with well‐defined chemical structures were prepared by molecular design, and the effect of the chemical structure on the physical properties of PET was investigated. Hydroxyl‐group end‐capped PETs with ηinh = 0.4–0.6 dL/g exhibited a viscosity behavior similar to Bingham fluids, although other PETs with similar molecular weights (MWs) showed Newtonian flow behavior. This rheological feature was more noticeable for hydroxyl‐group end‐capped branched PETs. In addition, hydroxyl‐group end‐capped branched PETs became solidlike from 80 rad/s as the frequency was increased. On the other hand, hydroxyl end‐capped linear PETs showed a noticeable viscoelastic transition peak around 20 rad/s. High MW linear and branched PETs with ηinh ≥ 0.9 prepared by multistep synthesis showed non‐Newtonian fluid behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1027–1035, 2001  相似文献   

17.
Polyurethane/organically modified montmorillonite (PU/O‐MMT) nanocomposites were electrospun and the effect of O‐MMT on the morphology and physical properties of the PU/O‐MMT nanofiber mats were investigated for the first time. The average diameters of the PU/O‐MMT nanofibers were ranged from 150 to 410 nm. The conductivities of the PU/O‐MMT solutions were linearly increased with increasing the content of O‐MMT, which caused a decrease in the average diameters of the PU/O‐MMT nanofibers. The as‐electrospun PU and PU/O‐MMT nanofibers were not microphase separated. The exfoliated MMT layers were well distributed within the PU/O‐MMT nanofibers and oriented along the fiber axis. When the PU/O‐MMT nanofibers were annealed, the exfoliated MMT layers hindered the microphase separation of the PU. The electrospinning of PU/O‐MMT nanocomposites resulted in PU nanofiber mats with improved Young's modulus and tensile strength. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3171–3177, 2005  相似文献   

18.
Semiconducting oligomers and polymers decorated with two or one dendronized tpy‐Ru(II)‐tpy metallocomplexes are presented. Initially, free terpyridine end‐functionalized semiconducting oligomers (distyrylanthracene, quinquephenylene, mono‐ and trifluorenes) were prepared while in a second approach, atom transfer radical polymerization was employed for the preparation of side‐chain oligomeric and polymeric (oxadiazole)s using a terpyridine initiator. These terpyridine‐bearing oligomers and polymers were complexated with a Percec‐type first‐generation (G1) dendronized terpyridine–Ru(III)Cl3 monocomplex, having two dodecyloxy groups. All oligomeric and polymeric metallocomplexes were characterized via NMR spectroscopies for their structural perfection and via UV‐Vis and PL spectroscopies for their optical properties. The existence of the organic semiconducting blocks in combination with the terpyridine–Ru(II)–terpyridine groups afforded hybrid metallo‐semiconducting species presenting the optical features of both their components. Moreover, their thin‐film morphologies were investigated through atomic force microscopy, revealing, in some cases, an organization tendency in the nanometer scale. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1939–1952, 2009  相似文献   

19.
Side‐chain liquid‐crystalline polymers (SCLCPs) as nucleating agents for high‐density polyethylene (HDPE) were investigated. For this purpose, the molecular architectures of four different vinyl monomers with liquid‐crystalline properties were designed and prepared with 1‐butanol, 1‐pentanol, 4‐hydroxybenzoic acid, hydroquinone, and acryloyl chloride as the starting materials through alkylation and acylation reactions. The corresponding polymers were synthesized by homopolymerization in 1,4‐dioxane with benzoyl peroxide as the initiator at 60 °C. Both the monomers and the synthesized polymers were characterized with elemental analysis, Fourier transform infrared, and 1H NMR measurements. Differential scanning calorimetry, thermogravimetric analysis, and hot stage polarized optical microscopy were employed to study the phase‐transition temperature, mesophase texture, and thermal stability of the liquid‐crystalline polymers. The results showed that all the polymers had thermotropic liquid‐crystalline features. Being used as nucleating agents, SCLCPs effectively increased both the crystallization temperature and rate and, at the same time, raised the crystallinity for HDPE. In comparison with common small‐molecule nucleating agents, such as 1,3:2,4‐dibenzylidenesorbitol, SCLCPs are more efficient and are indeed excellent nucleating agents for HDPE. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3067–3078, 2005  相似文献   

20.
Naturally occurring oleic and undecylenic acids were used as raw materials for the synthesis of novel polyurethanes (PUs). The application of environmentally friendly thiol‐ene additions to 10‐undecenoate and oleate derivatives was studied with the goal of obtaining renewable diols. The resulting monomers were then polymerized with 4,4′‐methylenebis (phenylisocyanate), in N,N‐dimethylformamide solution using tin (II) 2‐ethylhexanoate as catalyst, to produce the corresponding thermoplastic PUs (TPUs). Also, ultrasound irradiation has been tested to improve the synthesis of PU. Under these conditions, TPUs were obtained in high yields (80–99%) with weight‐average molecular weights in the 36–83 kDa range. The chemical structures of PUs were assessed by FTIR and NMR spectroscopy. The thermal and mechanical properties of the synthesized TPUs have been studied and they showed a clear dependence on the structure of the parent diol. MTT test was carried out to asses the potential cytotoxicity of the prepared PUs, indicating no cytotoxic response. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号