首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
Multilevel quantum coherence and its quantum‐vacuum counterpart, where a three‐level dark state is involved, are suggested in order to achieve new photonic and quantum optical applications. It is shown that such a three‐level dark state in a four‐level tripod‐configuration atomic system consists of three lower levels, where constructive and destructive quantum interference between two control transitions (driven by two control fields) arises. We point out that the controllable optical response due to the double‐control tunable quantum interference can be utilized to design some fascinating new photonic devices such as logic gates, photonic transistors and switches at quantum level. A single‐photon two‐input XOR logic gate (in which the incident “gate” photons are the individual light quanta of the two control fields) based on such an effect of optical switching control with an EIT (electromagnetically induced transparency) microcavity is suggested as an illustrative example of the application of the dark‐state manipulation via the double‐control quantum interference. The present work would open up possibility of new applications in both fundamental physics (e.g., field quantization and relevant quantum optical effects in artificial systems that can mimic atomic energy levels) and applied physics (e.g., photonic devices such as integrated optical circuits at quantum level).  相似文献   

2.
Ultracold atomic physics experiments offer a nearly ideal context for the investigation of quantum systems far from equilibrium. We describe three related emerging directions of research into extreme non‐equilibrium phenomena in atom traps: quantum emulation of ultrafast atom‐light interactions, coherent phasonic spectroscopy in tunable quasicrystals, and realization of Floquet matter in strongly‐driven lattice systems. We show that all three should enable quantum emulation in parameter regimes inaccessible in solid‐state experiments, facilitating a complementary approach to open problems in non‐equilibrium condensed matter.  相似文献   

3.
We review our theoretical advances in quantum tunneling of BoseEinstein condensates in optical traps and in microcavities. By employing a real physical system, the frequencies of the pseudo Goldstone modes in different phases between two optical traps are studied respectivdy, which are tile crucial feature of the non-Abelian Joseptmon effect. When the optical lattices are under gravity, we investigate the quantum tummling in the "Wannier-Stark localization" regime and "Lan(lau Zener tunneling" regime. We finally get the total decay rate and the rate is valid over the entire range of temperatures. At high temperatures, we show how the decay rate reduces to the appropriate results for the classical thermal activation. At hltermediate temperatures, the results of tile total decay rate are consistent with the thermally assisted tunneling. At low temperatures, we obtain the pure quantmn tunneling ultimately. And we study the alternating-current and direct-current (ac and de) photonic 3osephson effects in two weakly linked microcavities containing ultracold two-level atones, which allows for direct observation of the effects. This enables new investigations of the effect of maw-body physics in strongly coupled atom-cavity systems and provides a strategy for constructing novel interference devices of coherent photons. In addition, we propose the experimental protocols to observe these quantmn tunneling of Bose- Einstein condensates.  相似文献   

4.
Quantum dots in photonic crystals are interesting both as a testbed for fundamental cavity quantum electrodynamics (QED) experiments and as a platform for quantum and classical information processing. We describe a technique to coherently access the QD-cavity system by resonant light scattering. Among other things, the coherent access enables a giant optical nonlinearity associated with the saturation of a single quantum dot strongly coupled to a photonic crystal cavity. We explore this nonlinearity to implement controlled phase and amplitude modulation between two modes of light at the single photon level—a nonlinearity observed so far only in atomic physics systems. We also measured the photon statistics of the reflected beam at various detunings with the QD/cavity system. These measurements reveal effects such as photon blockade and photon-induced tunneling, for the first time in solid state. These demonstrations lie at the core of a number of proposals for quantum information processing, and could also be employed to build novel devices, such as optical switches controlled at the single photon level.  相似文献   

5.
J. Li  R. Yu 《Physics letters. A》2008,372(35):5660-5665
We study the propagation of two quantized optical fields via considering the collective effects of photonic emissions and excitations of a three-level cyclic-type system (such as atomic ensemble with symmetry broken, or the chiral molecular gases, or manual “atomic” array with symmetry broken), where the quantum transitions is driven by two quantized fields and a classical one. The results show that the parametric conversion and maximally entangled photon pair generation can be achieved by means of the collective excitation of the two upper energy levels induced by the classic optical field. This investigation may be used for the generated coherent short-wavelength quantum radiation and quantum information processing.  相似文献   

6.
The optical response of an atomic vapor can be coherently manipulated by tunable quantum interference occurring in atomic transition processes. A periodic layered medium whose unit cells consist of a dielectric and an EIT (electromagnetically induced transparency) atomic vapor is designed for light propagation manipulation. Such an EIT‐based periodic layered medium exhibits a flexible frequency‐sensitive optical response, where a very small change in probe frequency can lead to a drastic variation of reflectance and transmittance. As the destructive quantum interference relevant to two‐photon resonance arises in EIT atoms interacting with both control and probe fields, the controllable optical processes that depend sensitively on the external control field will take place in this EIT‐based periodic layered medium. Such a frequency‐sensitive and field‐controlled optical behavior of reflection and transmission in the EIT photonic crystal can be applicable to designs of new devices such as photonic switches, photonic logic gates and photonic transistors, where one laser field can be controlled by the other one, and would have potential applications in the areas of integrated optical circuits and other related techniques (e.g., all‐optical instrumentations).  相似文献   

7.
The chaotic coherent atomic tunneling between two periodically driven and weakly coupled Bose-Einstein condensates has been investigated. The perturbed correction to the homoclinic orbit is constructed and its boundedness conditions are established that contain the Melnikov criterion for the onset of chaos. We analytically reveal that the chaotic coherent atomic tunneling is deterministic but not predictable. Our numerical calculation shows good agreement with the analytical result and exhibits nonphysically numerical instability. By adjusting the initial conditions, we propose a method to control the unboundedness, which leads the quantum coherent atomic tunneling to predictable periodical oscillation.  相似文献   

8.
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.Received: 22 May 2004, Published online: 10 August 2004PACS: 03.75.-b Matter waves - 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates - 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations - 05.30.Jp Boson systems  相似文献   

9.
刘晓威  张可烨 《物理学报》2017,66(16):160301-160301
操控原子玻色-爱因斯坦凝聚体在双势阱中的动力学通常是通过改变势阱深度来实现,本文提出了一种基于调节原子有效质量的控制方案,可以在不改变双阱势的前提下操控凝聚体的双阱动力学.利用双模近似,本文解析地导出了超冷原子在双阱势中的隧穿强度和相互作用强度对有效质量的依赖关系,并基于平均场近似数值模拟了在有效质量调节下的凝聚体动力学演化,展示了隧穿振荡和自束缚等典型的双阱动力学行为.此外,本文的研究还发现,借助负有效质量效应,这一方案甚至可以等效地实现对负散射长度原子凝聚体双阱动力学行为的操控.  相似文献   

10.
We derive a quantum master equation for a single mode excitation of a Bose-Einstein condensate by a high-finesse optical cavity. This system is formally analogous to a broad class of opto-mechanical systems comprising vibrating mirrors and resonator modes coupled by radiation pressure. The presented equation accounts for the dissipative part of the dynamics due to the coupling of a driven, lossy optical mode of a resonator. This allows for exploring the quantum limit of opto-mechanical systems in the presence of dissipation in a classically bistable regime. We find that the measurement-induced back-action noise impedes the observation of quantum tunneling and leads to a non-exponential dephasing of coherent matter wave oscillations.  相似文献   

11.
The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all‐optical laser‐driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump‐probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators.

  相似文献   


12.
Electromagnetically induced optical (or photonic) lattices via atomic coherence in atomic ensembles have recently received great theoretical and experimental interest. We here conceive a way to generate electromagnetically induced moiré optical lattices — a twisted periodic pattern when two identical periodic patterns (lattices) are overlapped in a twisted angle (θ) — in a three-level coherent atomic gas working under electromagnetically induced transparency. We show that, changing the twisted angle and relative strength between the two constitutive sublattices, the moiré Bloch bands that are extremely flattened can always appear, resembling the typical flat-band and moiré physics found in other contexts. Dynamics of light propagation in the induced periodic structures demonstrating the unique linear localization and delocalization properties are also revealed. Our scheme can be implemented in a Rubidium atomic medium, where the predicted moiré optical lattices and flattened bands are naturally observable.  相似文献   

13.
Time‐driven quantum systems are important in many different fields of physics as cold atoms, solid state, optics, etc. Many of their properties are encoded in the time evolution operator or the effective Hamiltonian. Finding these operators usually requires very complex calculations that often involve some approximations. To perform this task, a systematic scheme that can be cast in the form of a symbolic computational algorithm is presented. It is suitable for periodic and non‐periodic potentials and, for convoluted systems, can also be adapted to yield numerical solutions. The method exploits the structure of the associated Lie group and a decomposition of the evolution operator on each group generator. To illustrate the use of the method, five examples are provided: harmonic oscillator with time‐dependent frequency (Paul trap), modulated optical lattice, time‐driven quantum oscillator, a step‐wise driving of a free particle, and the non‐periodic Caldirola‐Kanai Hamiltonian. To the extent of the authors' knowledge, whereas the exact form of Paul trap's evolution operator is well known, its effective Hamiltonian was until now unknown. The remaining four examples accurately reproduce previous results.  相似文献   

14.
巴诺  吴向尧  刘晓静  张斯淇  王婧  高海欣 《光学学报》2012,32(8):827001-243
研究了一个由两个同向驻波场和一个微波场相干驱动的五能级87 Rb原子系统,并在探测场共振频率处实现了可调谐三光子带隙。利用激光场与多能级原子系综相互作用的密度矩阵方程,结合光脉冲在具有空间周期性介质中的相干传输矩阵理论,推导出了描述相干原子系统稳态条件下的反射谱和透射谱。由数值模拟发现,通过改变驱动场的失谐和拉比频率可以动力学地调控光子带隙的位置和宽度,而且这种相干诱导三光子带隙能够同时操控三个不同中心频率光脉冲的传播。  相似文献   

15.
Destructive and constructive quantum interferences exhibited in a four-level Y-configuration double-control atomic system are suggested. It is shown that the probe transition (driven by the probe field) can be manipulated by the quantum interferences between two control transitions (driven by the control fields) of the four-level system. The atomic vapor is opaque (or transparent) to the probe field if the destructive (or constructive) quantum interference between the control transitions emerges. The optically sensitive responses due to double-control quantum interferences can be utilized to realize some quantum optical and photonic devices such as the logic-gate devices, e.g., the NOT, OR, NOR and EXNOR gates.  相似文献   

16.
王正岭  曹国荣  印建平 《物理学报》2008,57(10):6233-6239
提出了一种采用两套超大红失谐消逝波干涉和一束蓝失谐消逝波光场来实现原子二维表面微光阱阵列和原子有效强度梯度冷却的新方案,得到了二维表面微光阱阵列的光强分布和光学势分布.研究发现,二维表面微光阱阵列中微光阱的光学势能够有效地囚禁从标准磁光阱中释放的冷原子,并且被囚禁的冷原子能在蓝失谐消逝波光场的作用下产生有效的强度梯度Sisyphus冷却,对87Rb原子而言,原子温度能被冷却到2.56μK.该方案在冷原子物理、原子光学和量子光学领域中有着广阔的应用前景. 关键词: 消逝波干涉 微光阱阵列 原子囚禁 强度梯度冷却  相似文献   

17.
杨柳  郜中星  薛冰  张勇刚  蔡永茂 《物理学报》2018,67(23):234204-234204
光子带隙是指某一频率范围的波不能在周期变化的空间介质中传播,即这种结构本身存在“禁带”,并已成功地应用于滤波器、放大器和混频器等器件的设计中.此前,许多专家都致力于提高带隙的反射率,但其只能逐渐接近1.本文在囚禁于一维光晶格中的冷原子介质中实现两个可调光子带隙,并通过选择两基态为精细结构的三能级∧型原子系统,考虑自发辐射相干效应来探究这两个带隙的反射率.适当调节参数,探测场出现增益,从而获得较高反射率的带隙结构,甚至可以超过1.此外,两个带隙反射率还可以通过调节偶极矩之间的夹角以及非相干驱动场强度等参数来操控.  相似文献   

18.
Based on the well-known electron coherent tunneling phenomenon, by simulation, a photonic tunneling filter fabricated in an optical waveguide is proposed. The Bragg grating structure is applied as the photonic barrier. Two photonic barriers confine a coherent resonance cavity or photon-quantum-well. We report an asymmetric-barrier structure with opposite phase. In this configuration, the central tunneling wavelength is exactly the same as the Bragg wavelength of the grating, independent of the photon-quantum-well dimension. The photon-quantum-well length can be adjusted to make the tunneling peak interval fall to a desired spacing. The photon barrier length is responsible for the filter bandwidth. As an application, an asymmetric grating photon tunneling filter with International Telecommunication Union grid is demonstrated.  相似文献   

19.
Using a quantum theory for an ensemble of two- or three-level atoms driven by electromagnetic fields in an optical cavity, we show that the various spins associated with the atomic ensemble can be squeezed. Two kinds of squeezing are obtained: on the one hand self-spin squeezing when the input fields are coherent ones and the atomic ensemble exhibits a large non-linearity; on the other hand squeezing transfer when one of the incoming fields is squeezed. Received 14 August 2001 and Received in final form 7 November 2001  相似文献   

20.
We observe the quantum coherent dynamics of atomic spinor wave packets in the double-well potentials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates between the left and right localized states of the ground doublet, and at certain times the wave packet corresponds to a coherent superposition of these mesoscopically distinct quantum states. The atom/optical double-well potential is a flexible and powerful system for further study of quantum coherence, quantum control, and the quantum/classical transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号