首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain bursts are often observed during compression tests of single crystal micropillars. In this work, we formulate a new continuum model that accounts for the strain bursts within the framework of crystal plasticity. The strain bursts are separated from the loading stage (nearly elastic loading) by introducing a dimensionless constant in the continuum model, and are detected by load serrations. The boundary conditions in the context of micropillar compression are studied and they are shown to be changing and unpredictable as plastic deformation proceeds. To evaluate the validity of our model, finite element simulations of the uniaxial compression tests on nickel micropillars are performed. Our simulations produce clearly visible strain bursts during the plastic flow and the produced intermittent flows are comparable with the experimental observations. For the bulk crystal, a series of strain bursts is identified in the course of plastic flow, despite an apparently smooth stress–strain response. We also show that the intermittent flow is intensified in the micrometer-scale due to both increasing numbers of the successive strain bursts and increasing amplitude of the strain burst, when the specimen size decreases. Finally, we show that the occurrences of the strain bursts are always associated with negative values of the second-order work.  相似文献   

2.
In this paper, a multiscale model that combines both macroscopic and microscopic analyses is presented for describing the ductile fracture process of crystalline materials. In the macroscopic fracture analysis, the recently developed strain gradient plasticity theory is used to describe the fracture toughness, the shielding effects of plastic deformation on the crack growth, and the crack tip field through the use of an elastic core model. The crack tip field resulting from the macroscopic analysis using the strain gradient plasticity theory displayes the 1/2 singularity of stress within the strain gradient dominated region. In the microscopic fracture analysis, the discrete dislocation theory is used to describe the shielding effects of discrete dislocations on the crack growth. The result of the macroscopic analysis near the crack tip, i.e. a new K-field, is taken as the boundary condition for the microscopic fracture analysis. The equilibrium locations of the discrete dislocations around the crack and the shielding effects of the discrete dislocations on the crack growth at the microscale are calculated. The macroscopic fracture analysis and the microscopic fracture analysis are connected based on the elastic core model. Through a comparison of the shielding effects from plastic deformation and the discrete dislocations, the elastic core size is determined.  相似文献   

3.
While localization of deformation at macroscopic scales has been documented and carefully characterized long ago, it is only recently that systematic experimental investigations have demonstrated that plastic flow of crystalline solids on mesoscopic scales proceeds in a strongly heterogenous and intermittent manner. In fact, deformation is characterized by intermittent bursts (‘slip avalanches’) the sizes of which obey power-law statistics. In the spatial domain, these avalanches produce characteristic deformation patterns in the form of slip lines and slip bands. Unlike to the case of macroscopic localization where gradient plasticity can capture the width and spacing of shear bands in the softening regime of the stress–strain graph, this type of mesoscopically jerky like localized plastic flow is observed in spite of a globally convex stress–strain relationship and may not be captured by standard deterministic continuum modelling. We thus propose a generalized constitutive model which includes both second-order strain gradients and randomness in the local stress–strain relationship. These features are related to the internal stresses which govern dislocation motion on microscopic scales. It is shown that the model can successfully describe experimental observations on slip avalanches as well as the associated surface morphology characteristics.  相似文献   

4.
The plastic deformation of silicon and other brittle materials near room temperature has conventionally been studied under high confining pressures, although it has been suggested that these may modify the dislocation core structure. Here, the possibility of using microcompression has been studied. Using this method the yield stress of silicon micropillars was measured for different pillar diameters and between 25 and 500 °C for a constant diameter of 2 μm. No pronounced effect of size on the yield stress was found, but the transition from failure by cracking to predominately plastic deformation was shown to be consistent with a previously proposed simple model for axial splitting. Deformed specimens were analysed by transmission electron microscopy to elucidate the operative dislocation mechanisms. This showed that at 500 °C deformation occurs by twinning and formation of partial dislocations, whereas at 100 °C it is associated with micro-cracking and only weakly dissociated dislocations.  相似文献   

5.
A combined finite element (FE) simulation and discrete dislocation dynamics (DD) approach has been developed in this paper to investigate the dynamic deformation of single-crystal copper at mesoscale. The DD code yields the plastic strain based on the slip of dislocations and serves as a substitute for the 3D constitutive form used in the usual FE computation, which is implemented into ABAQUS/Standard with a user-defined material subroutine. On the other hand, the FE code computes the displacement and stress field during the dynamic deformation. The loading rate effects on the yield stress and the deformation patterning of single-crystal copper are investigated. With the increasing of strain rate, the yield stress of single-crystal copper increases rapidly. A critical strain rate exists in each single-crystal copper block for the given size and dislocation sources, below which the yield stress is relatively insensitive to the strain rate. The dislocation patterning changes from non-uniform to uniform under high-strain-rate. The shear stresses in the bands are higher than that in the neighboring regions, which are formed shear bands in the crystal. The band width increases with the strain rate, which often take places where the damage occurs.  相似文献   

6.
Systematic experimental investigations have demonstrated that the plastic deformation of micropillar proceeds through a sequence of intermittent bursts, the sizes of which follow power-law statistics. In this study, a stochastic model based on the power-law distribution of burst size is formulated in the framework of crystal plasticity in order to investigate the temporal aspects of flow intermittency in micropillar compression. A Monte Carlo simulation scheme is developed to determine the burst size when a burst activity is captured. This burst size is considered as the displacement boundary condition of burst deformation. Three-dimensional finite element analysis of the model is performed and its predictions are validated by comparison with results from both micro-compression experiments and simulation tests of bulk crystals using the classic crystal plasticity finite element method (CPFEM). The model provides a reasonable prediction of stress–strain responses both at the macroscopic and microscopic scales. Finally, the capability of this model is shown with applications to the intermittent plastic deformation in micropillar compressions, in particular for their burst time durations and burst velocities. The results from such stochastic finite element analysis are shown to be consistent with earlier experimental findings and results of mean-field theory.  相似文献   

7.
Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.  相似文献   

8.
基于亚微米、纳米晶粒组织塑性变形过程中多种变形机制(位错机制、扩散机制及晶界滑动机制)共存,建立了理论模型,用于定量研究亚微米、纳米晶粒组织的塑性变形行为.以铜为模型材料,计算分析了晶粒尺度、应变率以及温度对亚微米、纳米晶粒组织塑性变形行为的影响.结果表明:相比粗晶铜,亚微米晶铜表现出明显的应变率敏感性,并且应变率敏感系数随晶粒尺度及变形速率的减小而增大;同时,增大变形速率或降低变形温度都能提高材料的应变硬化能力,延缓颈缩发生,进而提高材料的延性.计算分析结果与实验报道吻合.  相似文献   

9.
金属材料的塑性流动行为依赖于温度和应变率,温度和应变率敏感性是金属材料塑性流动的最重要的本质特性之一,建立合适的热黏塑性本构关系来准确描述金属塑性流动行为的温度和应变率依赖性,是金属材料能被广泛应用的必要前提。为此,对金属热黏塑性本构关系的最新研究进展进行了综述,介绍了常见的几种金属热黏塑性本构关系并进行了详细讨论,给出了各本构关系的优势与不足,最后系统介绍了包含金属塑性流动行为中出现的第三型应变时效、或K-W锁位错结构引起的流动应力随温度变化出现的反常应力峰以及拉压不对称等行为的金属热黏塑性本构关系的研究进展。  相似文献   

10.
Multiscale dislocation dynamic simulations are systematically carried out to reveal the dislocation mechanism controlling the confined plasticity in coated micropillar. It is found that the operation of single arm source (SAS) controls the plasticity in coated micropillar and a modified operation stress equation of SAS is built based on the simulation results. The back stress induced by the coating contributes most to the operation stress and is found to linearly depend on the ‘trapped dislocation’ density. This linear relation is verified by comparing with the solution of the current higher-order crystal plasticity theory and is used to determine the material parameters in the continuum back stress model. Furthermore, based on the linear back stress model and considering the stochastic distribution of SAS, a theoretical model is established to predict the upper and lower bound of stress–strain curve in the coated micropillars, which agrees well with that obtained in the dislocation dynamic simulation.  相似文献   

11.
Strong size effects have been experimentally observed when microstructural features approach the geometric dimensions of the sample. In this work experimental investigations and discrete dislocation analyses of plastic deformation in metallic thin films have been performed. Columnar grains representative of the film microstructure are here considered. Simulations are based on the assumptions that sources are scarcely available in geometrically confined systems and nucleation sites are mainly located at grain boundaries. Especially, we investigated the influence on the mesoscopic constitutive response of the two characteristic length scales, i.e., film thickness and grain size. The simulated plastic response qualitatively reproduces the experimentally observed size effects while the main deformation mechanisms appear to be in agreement with TEM analyses of tested samples. A new interpretation of size scale plasticity is here proposed based on the probability of activating grain boundary dislocation sources. Moreover, the key role of a parameter such as the grain aspect ratio is highlighted. Finally, the unloading behavior has been investigated and a strong size dependent Bauschinger effect has been found. An interpretation of these phenomena is proposed based on the analysis of the back stress distribution within the samples.  相似文献   

12.
经固溶处理的Al-Cu-Mg合金在常应变率拉伸实验中具有显著的锯齿形屈服现象,且屈服行为随固溶处理温度的改变而呈现不同的特征。塑性变形特性与合金材料的微细观结构,尤其是位错运动的演化密切相关。本文运用透射电子显微镜,研究在不同温度下固溶处理的Al-Cu-Mg合金的微观结构,尤其是析出颗粒的大小和含量。并结合宏观的拉伸实验结果,分析Al-Cu-Mg合金动态应变时效的机制。  相似文献   

13.
14.
赵社戌  匡震邦 《力学学报》1996,28(4):411-420
讨论了1Cr18Ni9Ti不锈钢薄壁圆管试件沿三段折线、不同曲率的圆形和椭圆应变路径承受拉-扭复合载荷的实验.在塑性应变空间中,观察加载路径的内蕴几何参数对应力矢量大小、方向影响的规律.结果表明:响应的延迟角、瞬时软化和重新强化性质与路径的内蕴几何学密切相关;Lensky的“局部确定性”假设不完全符合事实;变形历史和应变分量相互间的耦合效应对响应存在显著的影响.初步的电镜实验表明,材料中的位错组态和塑性应变历史密切相关  相似文献   

15.
经固溶处理的A1-Cu—Mg合金在常应变率拉伸实验中具有显著的锯齿形屈服现象,且屈服行为随固溶处理温度的改变而呈现不同的特征。塑性变形特性与合金材料的微细观结构,尤其是位错运动的演化密切相关。本文运用透射电子显微镜,研究在不同温度下固溶处理的Al—Cu—Mg合金的微观结构,尤其是析出颗粒的大小和含量。并结合宏观的拉伸实验结果,分析Al—Cu—Mg合金动态应变时效的机制。  相似文献   

16.
微压缩实验发现,微小尺度单晶金属柱体在塑性变形过程中会发生显著的应变突变,呈现出特殊的间歇性塑性流动特征。本文以数百纳米直径的单晶Au柱体为研究对象,探讨其在位移加载条件下的间歇性流动行为。首先根据位移加载条件下的塑性变形特征,提出了分析其应变突变的三阶段模型。进一步结合经典晶体塑性理论框架的有限元方法,建立了以二阶功参量为基础的连续塑性力学模型。通过与实验结果相对比发现,新模型能够较好地描述位移加载条件下微小尺度面心立方单晶金属材料的应变突变现象,能够合理预测单晶柱体的特殊变形行为。此外,二阶功准则作为位移加载条件下应变突变现象的判据是有效的。进而使用该理论模型,探讨了微小金属柱体应变突变随机性、尺寸相关性以及率敏感性等问题。  相似文献   

17.
The increasing application of plane-strain testing at the (sub-) micron length scale of materials that comprise elastically anisotropic cubic crystals has motivated the development of an anisotropic two-dimensional discrete dislocation plasticity (2D DDP) method. The method relies on the observation that plane-strain plastic deformation of cubic crystals is possible in specific orientations when described in terms of edge dislocations on three effective slip systems. The displacement and stress fields of such dislocations in an unbounded anisotropic crystal are recapitulated, and we propose modified constitutive rules for the discrete dislocation dynamics of anisotropic single crystals. Subsequently, to handle polycrystalline problems, we follow an idea of O’Day and Curtin (J. Appl. Mech. 71 (2004) 805–815) and treat each grain as a plastic domain, and adopt superposition to determine the overall response. This method allows for a computationally efficient analysis of micro-scale size effects. As an application, we study freestanding thin copper films under plane-strain tension. First, the computational framework is validated for the special case of isotropic thin films modeled by means of a standard 2D DDP method. Next, predictions of size dependent plastic behavior in anisotropic columnar-grained thin films with varying thickness/grain size are presented and compared with the isotropic results.  相似文献   

18.
We present a computational study on the effects of sample size on the strength and plastic flow characteristics of micropillars under compression loading. We conduct three-dimensional simulations using the parametric dislocation dynamics coupled with the boundary element method. Two different loading techniques are performed. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally observed size effects on plastic flow and work-hardening are consistent with a “weakest-link activation mechanism”.  相似文献   

19.
20.
铝合金在汽车工业中的广泛应用对于降低汽车重量、减少燃油消耗和汽车尾气的排放量具有十分重要的意义,但其室温塑性成形性能却受到了锯齿形屈服行为的影响,从而制约了铝合金进一步的推广应用。本文基于合金材料塑性变形过程中位错和溶质原子间相互作用的分析,建立了一个可用于描述锯齿形屈服现象的唯象本构模型。该模型将溶质原子对位错运动的钉扎效应和位错挣脱后的脱钉效应置于一个统一的框架内进行考虑,而这两个效应的相互竞争将决定材料宏观变形行为的发展演化。基于该模型的数值模拟结果和实验测试结果取得了良好的一致性,从而验证了理论和模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号