首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The flexible ditopic ligand 1,2-bis(3-(4-pyridyl)pyrazol-1-yl)ethane (L4Et) displays remarkable versatility in the complexes that it forms with transition metals with products ranging from 1D chains to interpenetrating 3D networks. The L4Et ligand itself crystallises in the space group P21, adopting a helical twist, although it is found in a variety of other conformations in its complexes. Coordination polymers containing the L4Et ligand vary from almost straight, parallel 1D chains of [Ag2(L4Et)2(ClO4)2(DMF)]·DMF (1), through interdigitating helical complexes containing tetrahedral Zn(II), [Zn(NCS)2(L4Et)]·DMF·H2O (2) to 2D sheets of [Cu(L4Et)2(H2O)2](PF6)2·xH2O (3) and the three-fold interpenetrating 3D network of [Co(L4Et)2(NCS)2] (4). The 3D network adopts an unusual 3D 4-connected dmp (65.8) topology. Dimensionality can be limited by the use of chelating co-ligands, demonstrated by the formation of the dinuclear complex [{Cu(py-2,6-CO2)(H2O)}2(L4Et)] (5).  相似文献   

2.
Compound trans-PtBr2(C2H4)(NHEt2) (1) has been synthesized by Et2NH addition to K[PtBr3(C2H4)] and structurally characterized. Its isomer cis-PtBr2(C2H4)(NHEt2) (3) has been obtained from 1 by photolytic dissociation of ethylene, generating the dinuclear trans-[PtBr2(NHEt2)]2 intermediate (2), followed by thermal re-addition of C2H4, but only in low yields. The addition of further Et2NH to 1 in either dichloromethane or acetone yields the zwitterionic complex trans-Pt(−)Br2(NHEt2)(CH2CH2N(+)HEt2) (4) within the time of mixing in an equilibrated process, which shifts toward the product at lower temperatures (ΔH° = −6.8 ± 0.5 kcal/mol, ΔS° = 14.0 ± 2.0 e.u., from a variable temperature IR study). 1H NMR shows that free Et2NH exchanges rapidly with H-bonded amine in a 4·NHEt2 adduct, slowly with the coordinated Et2NH in 1, and not at all (on the NMR time scale) with Pt-NHEt2 or -CH2CH2N(+)HEt2 in 4. No evidence was obtained for deprotonation of 4 to yield an aminoethyl derivative trans-[PtBr2(NHEt2)(CH2CH2NEt2)] (5), except as an intermediate in the averaging of the diasteretopic methylene protons of the CH2CH2N(+)HEt2 ligand of 4 in the higher polarity acetone solvent. Computational work by DFT attributes this phenomenon to more facile ion pair dissociation of 5·Et2NH2+, obtained from 4·Et2NH, facilitating inversion at the N atom. Complex 4 is the sole observable product initially but slow decomposition occurs in both solvents, though in different ways, without observable generation of NEt3. Addition of TfOH to equilibrated solutions of 4, 1 and excess Et2NH leads to partial protonolysis to yield NEt3 but also regenerates 1 through a shift of the equilibrium via protonation of free Et2NH. The DFT calculations reveal also a more favourable coordination (stronger Pt-N bond) of Et2NH relative to PhNH2 to the PtII center, but the barriers of the nucleophilic additions of Et2NH to the C2H4 ligand in 1 and of PhNH2 to trans-PtBr2(C2H4)(PhNH2) (1a) are predicted to be essentially identical for the two systems.  相似文献   

3.
Reaction of the bis(nitrile) complex [Mo2Cp2(μ-SMe)3(NCMe)2](BF4) (1) with dimethylpropargylic alcohol, HCCCMe2(OH), at room temperature in dichloromethane produced good yields of the μ-alkynol species [Mo2Cp2(μ-SMe)3{μ-CHCCMe2(OH)}](BF4) (2a) through replacement of the two acetonitrile ligands in 1 by the alkynol. The NMR spectra of 2a indicate a μ-η11 coordination mode for the alkyne which is thereby incorporated into a dimetallacyclobutene ring like that found here by X-ray diffraction (XRD) analysis of the related complex [Mo2Cp2(μ-SMe)3(μ-η11-CHCCO2Me)](BPh4) (2b). When 2a was stirred with Et3N at room temperature in dichloromethane, deprotonation gave high yields of the μ-3-hydroxyalkynyl derivative [Mo2Cp2(μ-SMe)3{μ-η12-CCCMe2(OH)}] (3), together with small amounts of the already-known vinylacetylide [Mo2Cp2(μ-SMe)3{μ-η12-CCC(Me)CH2}] (4) resulting from dehydration of 3. Treatment of 3 with 1 equiv. of HBF4 · OEt2 in diethyl ether at room temperature gave the 3-hydroxyvinylidene derivative [Mo2Cp2(μ-SMe)3{μ-η12-CCHCMe2(OH)}](BF4) (5) as the major product, together with other minor products [Mo2Cp2(μ-SMe)3{μ-η12-CCHC(Me)CH2}](BF4) (6), [Mo2Cp2(μ-SMe)3(μ-η12-CCCMe2)](BF4) (7), [Mo2Cp2(μ-SMe)3(μ-η12-CCH2)](BF4) (8), [Mo2Cp2(μ-SMe)3{μ-η12-CCH(CHMe2)}](BF4) (9) and [Mo2Cp2(μ-SMe)3(μ-O)](BF4) (10). The vinylidene (6) and allenylidene (7) species resulted from dehydration of the 3-hydroxyvinylidene complex 5 whereas the vinylidene derivative 8 was formed by deketonisation of 5. When 3 reacted with a large excess of HBF4 · OEt2 in dichloromethane, the 3-isopropylvinylidene complex 9 was obtained nearly quantatively via a H radical process. When left for several days CD2Cl2 solutions of 5 afforded mainly the vinylidene species 8 by deketonisation and the side-oxoproduct [Mo2Cp2(μ-SMe)3(μ-O)](BF4) (10) by hydrolysis or reaction with oxygen. Addition of nucleophiles (H, OMe, OH, SMe) to the allenylidene complex [Mo2Cp2(μ-SMe)3(μ-η12-CCCPh2)](BF4) (11) resulted in the formation of the corresponding μ-acetylide derivatives [Mo2Cp2(μ-SMe)3(μ-η12-CCCRPh2)] [R = H (12), OMe (16a), OH (17), SMe (16b)], which by further reaction with tetrafluoroboric acid afforded either the vinylidene species [Mo2Cp2(μ-SMe)3{μ-η12-CCH(CRPh2)}](BF4) when R = H (13), or the starting complex 11 when R is a leaving group (OMe). Reaction of 13 with Na(BH4) gave the μ-alkylidyne complex [Mo2Cp2(μ-SMe)3(μ-η1-CCH2CPh2H)] (14) by nucleophilic attack of H at the Cβ carbon atom of the vinylidene chain. Proton addition at Cα in 14 led to the formation of a μ-vinylidene compound 15 containing an agostic C-H bond. New complexes have been characterised by elemental analyses and spectroscopic methods, supplemented for 2b and 3 by X-ray diffraction studies.  相似文献   

4.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

5.
Attempts at methylating cis-[Mo2Cp2(μ-SMe)3L2](BF4) [Cp = η5-C5H5; L = CO (1a) CNxyl (1b), CNBut (1c), NCMe (1d)] with methyl triflate gave the corresponding thioether-bridged cations [Mo2Cp2(μ-SMe)2(μ-SMe2)L2]2+ (42+), except in the case of 1a which did not react at room temperature. The electronic properties of the ancillary ligands L thus have a crucial influence on the course of this reaction. The dimeric compounds [Mo2Cp2(μ-SMe)3(CNBut)(CN)] (2) and [Mo2Cp2(μ-SMe)3{μ-η1-NC(CH3)CH2CN}] (3), which potentially offer the alternatives of S- or N-methylation, reacted with methylating agents to give mainly the S-methylated derivatives 5 and 7. Only in the case of the nucleophilic reactant 2 was N-methylation also observed and isomer 6 was obtained as a minor product together with 5. New complexes have been completely characterised by multinuclear NMR, IR and elemental analysis, supplemented for 5 by X-ray diffraction study at 100 K.  相似文献   

6.
Reaction of 1,3-bis(picolyl)benzimidazolium chloride ([HL1]Cl) with Ag2O yields mononuclear complex [Ag(L1)Cl] (2), further reaction of 2 with Au(Et2S)Cl afforded [Au(L1)Cl] (3). Treatment of 2 with AgBF4 gave the trinuclear silver cluster [Ag3(L1)3](BF4)3 (4), whereas the digold complex [Au2(L1)2](BF4)2 (5) can be easily obtained from the carbene transfer reaction of 4 with Au(Et2S)Cl. A one-dimensional coordination polymer {[Ag(L2)](BF4) · CH3CN}n (8) was isolated from the reaction of [Ag(L2)Cl] (7, L2 = 1-benzyl-3-picolylbenzimidazolylidene) with additional Ag+ in good yield. The dinuclear [Ag2(L3)2](PF6)2 (12, L3 = 1,4-di(N-benzylbenzimidazolylidene)but-2-yne) is a 18-membered macrocycle. All these complexes have been structurally characterized. Complex 2 shows a dimeric structure because of intermolecular Ag?Cl interactions. Complex 4 consists of a triangular Ag3 ring with very short Ag-Ag contacts 2.777(1) Å, the Au-Au distance in 5 is 3.206(2) Å showing very weak Au-Au interaction and the macrocyclic cations in 12 are aligned one above another to form channels filled with hexafluorophosphate anions. The complexes 2-5, 8, and 12 are intensely luminescent upon irradiation of uv light, and their emission properties are briefly described.  相似文献   

7.
A facile synthesis of the novel selenium-capped trimolybdenum and tritungsten ring carbonyl clusters [Se2M3(CO)10]2− (M = Mo, 1; W, 4) have been achieved. The selenium-capped trimolybdenum cluster compound [Et4N]2[Se2Mo3(CO)10] ([Et4N]2[1]) can be obtained from the reaction of the trichromium cluster compound [Et4N]2[Se2Cr3(CO)10] with 4 equiv. of Mo(CO)6 in refluxing acetone. On the other hand, when [Et4N]2[Se2Cr3(CO)10] reacted with 4 equiv. of W(CO)6 in refluxing acetone, the planar cluster compound [Et4N]2[Se2W4(CO)18] ([Et4N]2[3]) was isolated, which could further transform to the tritungsten cluster compound [Et4N]2[Se2W3(CO)10] ([Et4N]2[4]) in good yield. Alternatively, clusters 1 and 4 could be formed from the reactions of the monosubstituted products [Et4N]2[Se2Cr2M(CO)10] (M = Mo; W, [Et4N]2[2]) with 3 equiv. of M(CO)6 in acetone, respectively. Complexes 1-4 are fully characterized by IR, 77Se NMR spectroscopy, and single-crystal X-ray analysis. Clusters 1, 2, and 4 are isostructural and each display a trigonal bipyramidal structure with a homometallic M3 ring (M = Mo, 1; W, 4) or a heterometallic Cr2W ring that is further capped above and below by μ3-Se atoms. Further, the intermediate planar complex 3 exhibits a Se2W2 square with each Se atom externally coordinated to one W(CO)5 group. This paper describes a systematic route to a series of selenium-capped trimetallic carbonyl clusters and the formation and the structural features of the resultant clusters are discussed.  相似文献   

8.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

9.
Reactions of [(dtc)2Mo2(S)2(μ-S)2] with one or two equivalents of CuBr in CH2Cl2 afforded two new heterobimetallic sulfide clusters, [(dtc)2Mo23-S)(μ-S)3(CuBr)] (1) and [(dtc)2Mo23-S)4(CuBr)2] (2). Both compounds were characterized by elemental analysis, IR, UV-vis and X-ray analysis. Compound 1 contains a butterfly-shaped Mo2S4Cu core in which one CuBr unit is coordinated by one bridging S and two terminal S atoms of the [(dtc)2Mo2(S)2(μ-S)2] moiety. In the structure of 2, one [(dtc)2Mo2(S)2(μ-S)2] moiety and two CuBr units are held together by six Cu-μ3-S bonds, forming a cubane-like Mo2S4Cu2 core.  相似文献   

10.
Four novel hexanuclear manganese(III) complexes based on derivatized salicylamidoximes, [MnIII63-O)2(O2CPh)2(Me2N-sao)6(EtOH)4] (1), [MnIII63-O)2(O2CPh)2(Me2N-sao)6(iPrOH)4] (2), [MnIII63-O)2(O2CPh)2(Et2N-sao)6(EtOH)4] (3) and [MnIII63-O)2(O2CPh)2(Et2N-sao)6(iPrOH)4] (4) (Me2N-Hsao = dimethylsalicylamidoxime; Et2N-Hsao = diethylsalicylamidoxime), have been prepared and characterized. Single-crystal X-ray diffraction allows one to determine that 1·2CHCl3 and 4 crystallize in the triclinic system with space group P(–1), whereas 3 crystallizes in the monoclinic system with space group P21/n. dc and ac magnetic susceptibility measurements of 1-4 reveal ferromagnetic coupling between Mn(III) metal ions and single-molecule magnet behaviour. The anisotropy barriers are 56, 52, 71 and 59 K for 1, 2, 3 and 4, respectively.  相似文献   

11.
Three new dinuclear copper(II) compounds: [Cu2(dpyam)21,1-N3)2(O2CH)2] (1), [Cu2(dpyam)21,1-N3)2(O2CCH3)2] (2) and [Cu2(dpyam)21,1-N3)2(O2CCH2CH3)2] (3) have been synthesized and characterized crystallographically and spectroscopically. Compounds 1, 2 and 3 consist of a dinuclear unit in which both Cu(II) ions are connected through two end-on azido bridges providing a distorted square pyramidal geometry with a CuN4O chromophore. The Cu?Cu separations are 3.195, 3.200 and 3.247 Å for compounds 1, 2 and 3, respectively. The magnetic properties have been measured in the range from 5 to 300 K and correlated with the molecular structures. All three compounds show a medium to weak ferromagnetic exchange interactions between the Cu(II) ions dominated by the bridging azido ligands, with a singlet-triplet splitting (J) of 63.3, 63.8 and 5.1 cm−1, for compounds 1, 2 and 3, respectively. A large zero-field splitting of about 0.4 cm−1 is observed in the EPR for compounds 1 and 2.  相似文献   

12.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   

13.
The new ferrocenyl substituted ditertiary phosphine {FcCH2N(CH2PPh2)CH2}2 [Fc = (η5-C5H4)Fe(η5-C5H5)] (1) was prepared, in 72% yield, by Mannich based condensation of the known bis secondary amine {FcCH2N(H)CH2}2 with 2 equiv. of Ph2PCH2OH in CH3OH. Phosphine 1 readily coordinates to various transition-metal centres including Mo0, RuII, RhI, PdII, PtII and AuI to afford the heterometallic complexes {RuCl2(p-cym)}2(1) (2), (AuCl)2(1) (3), cis-PtCl2(1) (4), cis-PdCl2(1) (5), cis-Mo(CO)4(1) (6), trans,trans-{Pd(CH3)Cl(1)}2 (7) and trans,trans-{Rh(CO)Cl(1)}2 (8). In complexes 2, 3, 7 and 8 ligand 1 displays a P,P′-bridging mode whilst for 4-6 a P,P′-chelating mode is observed. All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 1, 2 · 2CH2Cl2, 3 · CH2Cl2, 4 · CH2Cl2, 6 · 0.5CHCl3 and 8 have been elucidated by single crystal X-ray crystallography. Electrochemical measurements have been undertaken, and their redox chemistry discussed, on both noncomplexed ligand 1 and representative compounds containing this new ditertiary phosphine.  相似文献   

14.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

15.
Treatment of [M(Buppy)2Cl]2 (M=Ir (1), Rh (2); BuppyH=2-(4-tert-butylphenyl)pyridine) with Na(Et2NCS2), K[S2P(OMe)2], and K[N(Ph2PS)2]2 afforded monomeric [Ir(Buppy)2(SS)] (SS=Et2NCS2 (3), S2P(OMe)2 (4), N(PPh2S)2 (5)) and [Rh(Buppy)2(SS)] (SS=Et2NCS2 (6), S2P(OMe)2 (7), N(PPh2S)2 (8)), respectively. Reaction of 1 with Na[N(PPh2Se)2] gave [Ir(Buppy)2{N(PPh2Se)2}] (9). The crystal structures of 3, 4, 7, and 8 have been determined. Treatment of 1 or 2 with AgOTf (OTf=triflate) followed by reaction with KSCN gave dinuclear [{M(Buppy)2}2(μ-SCN)2] (M=Ir (10), Rh (11)), in which the SCN ligands bind to the two metal centers in a μ-S,N fashion. Interaction of 1 and 2 with [Et4N]2[WQ4] gave trinuclear heterometallic complexes [{Ir(Buppy)2}2(μ-WQ4)] (Q=S (12), Se (13)) and [{Rh(Buppy)2}2{(μ-WQ)4}] (Q=S (14), Se (15)), respectively. Hydrolysis of 12 led to formation of [{Ir(Buppy)2}2{W(O)(μ-S)23-S)}] (16) that has been characterized by X-ray diffraction.  相似文献   

16.
Room temperature reaction of a benzene solution of [Cp2Mo2Fe2(CO)73-E)(μ3-E)] (EE=Se2 (1), STe (2), SeTe (3)) with PriNC or ButNC resulted in the formation of iron bonded isocyanide clusters [Cp2Mo2Fe2(RNC)(CO)63-E)(μ3-E)], [E=E=Se, R=Pri (5) or But (9); E=S, E=Te, R=Pri (6a, 6b) or R=But (10a, 10b); E=Se, E=Te, R=Pri (7a, 7b) or R=But (11a, 11b)] and molybdenum bonded isocyanide clusters [Cp2(RNC)Mo2Fe2(CO)63-E)(μ3-E)], [E=E=Se, R=Pri(13) or But (17); E=S, E=Te, R=Pri (14) or R=But, (18); E=Se, E=Te, R=Pri (15) or R=But (19)]. Two isomers (a and b) were detected by 1H NMR spectroscopy for the mixed-chalcogen clusters 6, 7, 10 and 11, where the isocyanide group is bonded to an iron atom. Thermolytic reaction conditions were necessary for the reaction of [(η5-C5H5)2Mo2Fe2(CO)73-Te)2] (4) with Pri NC or But NC to give [Cp2Mo2Fe2(RNC)(CO)63-Te)2] (R=Pri (8) or R=But, (12)) and [Cp2(RNC)Mo2Fe2(CO)63-Te)2] (R=Pri (8)). Compounds 5-19 have been characterised by IR and 1H and 13C NMR spectroscopy. The Se- and Te-bridged compounds have been further characterised by 77Se and 125Te NMR spectroscopy. The structures of compounds 12 and 14 were determined by single crystal X-ray diffraction methods. Redox properties of the mixed-metal clusters, 2, 6, 8, 12 and 14 have been studied by cyclic voltammetry in the potential range ±2.5 V at 298 K, using a platinum working electrode.  相似文献   

17.
Three new molybdophosphates, [Co(dien)2]·(H3dien)6·{[CoMo12O24(OH)6(HPO4)2(PO4)6][Co(Hdien)]2[CoMo12O24(OH)6(PO4)8]}·(dien)·4H3O·5H2O (1), (H3dien)4[MMo12O24(OH)6(HPO4)4(PO4)4]·10H2O [M=Co for (2), Ni for (3); dien=diethylenetriamine], have been synthesized by employing hydrothermal method and characterized by single crystal X-ray diffraction. Compound 1 is built up of Co[P4Mo6]2 units as the structural motif covalently linked by [Co(Hdien)] complex subunits to yield an unusual 1-D chain. Compounds 2 and 3 are isomorphic and both display covalent discrete M[P4Mo6]2 cluster structures which are linked by the hydrogen bonds to form 3-D supramolecular networks. Both 1 and 2 display antiferromagnetic interaction and these three compounds all exhibit intensive photoluminescence.  相似文献   

18.
The treatment of the complex [Ir(η2-C2H4)2(L)][PF6] (L = κ3-N,N,N-(S,S)-iPr-pybox) with acetic acid (1:1 molar ratio) at −10 °C affords the complex [Ir(C2H5)(κ2-O,O-O2CCH3)(L)][PF6] (1). The dinuclear iridium(III) complex [Ir2(μ-Cl)2(C2H5)2(L)2][PF6]2 (2) is stereoselectively obtained by spontaneous intramolecular insertion of ethylene into the iridium-hydride bond of the mononuclear complex [IrClH(η2-C2H4)(L)][PF6]. The single bridging chloride dinuclear derivative [Ir2(μ-Cl)(C2H5)2Cl2(L)2][PF6] (3) is prepared by reaction of 2 with one equivalent of NaCl. The intramolecular insertion reaction of methyl and ethyl propiolate into the Ir-H bond of the complex [IrClH(MeCN)(L)][PF6] gives stereoselectively the dinuclear complexes [Ir2(μ-Cl)2(HCCHCO2R)2(L)2][PF6]2 (R = Me (4), Et (5)). The reaction of the complexes 4, 5 with one equivalent of NaCl or with an excess of sodium acetate yields the dinuclear [Ir2(μ-Cl)(HCCHCO2R)2Cl2(L)2][PF6] (R = Me (6), Et (7)) or the mononuclear [IrCl(HCCHCO2Et)(κ1-O-O2CMe)(L)] (8) complexes, respectively. The structure of the dinuclear complex 3 · CH2Cl2 has been determined by an X-ray monocrystal study.  相似文献   

19.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

20.
Decamethyl-1,3-diboraruthenocene [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2}] (1) reacts with cyclo-octasulfur in hexane to give [(η5-C5Me5){η5-(CMe)3(BMe)2}RuS] (3), which may also be obtained from 1 and propylene sulfide. 1 reacts with H2S to form the ruthenathiacarboranyl complex [(η5-C5Me5)Ru{η4-(CMe)3(BMe)2S}] (6), for which a nido-structure is proposed. The isomeric compounds 3 and 6 have different stabilities: 3 loses sulfur and unexpectedly the closo-cluster [(η5-C5Me5)2Ru2H(CMe)3(BMe)2] (4) is formed with hydrogen bridging the basal and apical Ru centers. Reaction of 1 with carbonylsulfide (COS) yields the dinuclear ruthenium compound [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2(S)(COBMe)}]2 (7) in which two B-O groups bridge two ruthenium complexes. Its formation results from a complex reaction sequence: sulfur inserts into the diborolyl ring and the ligand CO forms an oxygen-boron bridge to a second molecule, followed by insertion of the carbonyl carbon into the double bond of the diboraheterocycle. Carbon disulfide reacts with 1 to give the dinuclear complex 8 with two CS2 molecules connecting the ruthenium centers. When 1 and P4 are heated in toluene, the sandwich 9 is obtained by formal insertion of a P-H group into the diborolyl ring of 1 and the triple-decker [{η5-(C5Me5)Ru}2{μ-(MeC)3P(MeB)2} (10) is detected in the mass spectrum. The phosphaalkyne PCtBu inserts into 1 to give the ruthenaphosphacarborane [(η5-C5Me5)Ru{(CMe)2(BMe)(PCtBu)(CMe)(BMe)}] (11) in high yield. Phosphanes react with 1 to give weak donor-acceptor complexes 1 · PH2R (12) (R=Ph, H). The compositions of the compounds are deduced from spectroscopic and analytical data and are confirmed for 4 and 7 by X-ray structural analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号