首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Eight new antimony (III) complexes containing dithiocarbamate ligands (R2NCS2)2SbBr [R2NCS2 = OC4H8NCS2 (1), C2H5NC4H8NCS2 (2), Me2NCS2 (3), C4H8NCS2 (4)] and (R2NCS2)3Sb[R2NCS2 = C5H10NCS2 (5), Bz2NCS2 (6), Et2NCS2 (7), (HOCH2CH2)2NCS2 (8)] have been synthesized by the reactions of antimony (III) halides with dithiocarbamate ligands in 1:2 or 1:3 stoichiometries. All the complexes have been characterized by elemental analysis, melting point as well as spectral [IR and NMR (1H and 13C)] studies. The crystal structures of complexes 1, 5 and 8 have been determined by X-ray single crystal diffraction, and their electrochemical character has also been studied.  相似文献   

2.
The syntheses, structures, spectroscopy, and electrochemistry for six Ir(III) and Rh(III) mixed sandwich mononuclear complexes involving tridentate macrocycles and pentamethylcyclopentadienide (Cp*) are reported. The complexes are readily prepared by direct ligand substitution reactions from the dichloro bridged binuclear complexes, [{M(Cp*)(Cl)2}2]. All complexes have the general formula [M(L)(Cp*)]X2 (M = Ir(III) or Rh(III), L = macrocycle, or Cl) and exhibit a distorted octahedral structure involving three donor atoms from the macrocycle and the facially coordinating carbocyclic Cp* ligand. The complex cations include: [Rh(η5 -Cp*)(9S3)]2+ (1), [Rh(η5-Cp*)(9N3)]2+ (2), [Rh(η5-Cp*)(10S3)]2+ (3), [Ir(η5-Cp*)(9S3)]2+ (4), [Ir(η5-Cp*)(9N3)]2+ (5), and [Ir(η5-Cp*)(10S3)]2+ (6), where 9S3 = 1,4,7-trithiacyclononane, 9N3 = 1,4,7-triazacyclononane, and 10S3 = 1,4,7-trithiacyclodecane. The structures for all six complexes are supported by 1H and 13C{1H} NMR spectroscopy, and five complexes are also characterized by single-crystal X-ray crystallography (complexes 1-5). The 1H NMR splittings between the two sets of methylene protons for both the Rh(III) and Ir(III) 9S3 complexes are much larger (0.4 vs. 0.2 ppm) compared to those in the two 9N3 complexes. Similarly, the 13C{1H} NMR spectra in all four thioether complexes show that the ring carbons in the Cp* ligand are shifted by over 10 ppm downfield compared to the azacrown complexes. The electrochemistry of the complexes is surprisingly invariable and is dominated by a single irreversible metal-centered reduction near −1.2 V vs. Fc/Fc+.  相似文献   

3.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

4.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

5.
Treatment of [Ir(ppy)2(μ-Cl)]2 and [Ir(ppy)2(dtbpy)][OTf] (ppy = 2-(2′-pyridyl)phenyl; dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine; OTf = triflate) with pyridinium tribromide in the presence of Fe powder led to isolation of [Ir(4-Br-ppy)(μ-Br)]2 (1) and [Ir(4-Br-ppy)2(dtbpy)][OTf] (2), respectively. Pd-catalyzed cross-coupling of 2 with RB(OH)2 afforded [Ir(4-R-ppy)2(dtbpy)][OTf] (R = 4′-FC6H4 (3)), 4′-PhC6H4 (4), 2′-thienyl (5), 4′-C6H4CH2OH (6). Treatment of 4 with B2(pin)2 (pin = pinacolate) afforded [Ir{4-(pin)B-ppy}2(dtbpy)][OTf] (7). The alkynyl complexes [Ir(4-PhCC-ppy)2(dtbpy)][OTf] (8) and [Ir{4-Me2(OH)CC-ppy}(4-Br-ppy)(dtbpy)][OTf] (9) were prepared by cross-coupling of 2 with PhCCSnMe3 and Me2C(OH)CCH, respectively. Ethynylation of [Ir(fppy)2(dtbpy)][OTf] (fppy = 5-formyl-2-(2′-pyridyl)phenyl) with Ohira’s reagent MeCOC(N2)P(O)(OEt)2 afforded [Ir{5-HCC-ppy}2(dtbpy)][OTf] (10). The solid-state structures of 2, 5, 7, and 10 have been determined.  相似文献   

6.
The treatment of optically P-chiral tetraphosphine, (3S,6R,9R,12S)-6,9-di-tert-butyl-2,2,3,12,13,13-hexamethyl-3,6,9,12-tetraphosphatetradecane (1), with rhodium(I), palladium(II), and ruthenium(II) complex precursors led to the selective formation of mono-, di-, or trinuclear homo- or heterometallic complexes, [Rh(1)]SbF6 (4), [{Rh(nbd)}2(1)](SbF6)2 (3), [{Pd(η3-allyl)}2(1)](SbF6)2 (5), [{RuCl(η5-C5(CH3)5)}2(1)] (6), and [{RuCl26-benzene)}2(PdCl2)(1)] (8). These complexes were characterized by NMR and X-ray crystallographic analysis.  相似文献   

7.
A variety of gold(Ⅲ) adducts having a-ligated oxygen-donor ligands have been prepared from [Au(ppy)Cl2](ppy.phenylpyridine)(1) either by partial or total replacement of the chloride ions. The new species comprise hydroxo-[Au(ppy)(OH)Cl](2), and [Au(ppy)(OH)2](3), oxo-[Au2(ppy)2(μ-O)2](4), acetate-[Au(ppy)(O2CMe2)] (5), and alkoxo complexes-[Au(ppy)(OR)Cl](6, 7) and [Au(ppy)(OR)2](8--10)(R=Me, 6 and 8; Et, 7 and 9; Pr, 10). The dihydroxo and the oxo complexes can be interconverted by refluxing the former in anhydrous THF and the latter in water. The hydroxides 2 and 3 and the acetato complex 5 undergo σ-ligand metathesis in ROH solution(R=Me, Et or Pr) to give the corresponding alkoxides.  相似文献   

8.
Four novel hexanuclear manganese(III) complexes based on derivatized salicylamidoximes, [MnIII63-O)2(O2CPh)2(Me2N-sao)6(EtOH)4] (1), [MnIII63-O)2(O2CPh)2(Me2N-sao)6(iPrOH)4] (2), [MnIII63-O)2(O2CPh)2(Et2N-sao)6(EtOH)4] (3) and [MnIII63-O)2(O2CPh)2(Et2N-sao)6(iPrOH)4] (4) (Me2N-Hsao = dimethylsalicylamidoxime; Et2N-Hsao = diethylsalicylamidoxime), have been prepared and characterized. Single-crystal X-ray diffraction allows one to determine that 1·2CHCl3 and 4 crystallize in the triclinic system with space group P(–1), whereas 3 crystallizes in the monoclinic system with space group P21/n. dc and ac magnetic susceptibility measurements of 1-4 reveal ferromagnetic coupling between Mn(III) metal ions and single-molecule magnet behaviour. The anisotropy barriers are 56, 52, 71 and 59 K for 1, 2, 3 and 4, respectively.  相似文献   

9.
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L1), C5H7N2CH2CONiBu2 (L2), C3H3N2CH2CONBu2 (L3), C3H3N2CH2CONiBu2 (L4) and C5H7N2CH2CON(C8H17)2 (L5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L1 to L4 with [UO2(NO3)2 · 6H2O], [La(NO3)3 · 6H2O] and [Ce(NO3)3 · 6H2O] has been evaluated. Structures for the compounds [UO2(NO3)2 C5H7N2CH2CONBu2] (6) [UO2(NO3)2 C5H7N2CH2CONiBu2] (7) and [Ce(NO3)3{C3H3N2CH2CONiBu2}2] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration.  相似文献   

10.
Reactions of the trans-PdCl2(PPh3)2 precursor with furan-2-carbaldehyde thiosemicarbazone (Hftsc) and thiophene-2-carbaldehyde thiosemicarbazone (Httsc), in 1:1 molar ratios in the presence of Et3N base, removed one Cl and one PPh3 group from the PdII center, and yielded the complexes [Pd(η2-N3,S-ftsc)(PPh3)Cl] (1) and [Pd(η2-N3,S-ttsc)(PPh3)Cl] (2), respectively. However, when a 1:2 molar ratio (M:L) was used, both Cl and PPh3 ligands were removed, yielding the complexes trans-[Pd(η2-N3,S-ftsc)2] (3) and trans-[Pd(η2-N3,S-ttsc)2] (4). Complexes 14 have been characterized with the help of analytical data, spectroscopic techniques (IR, 1H and 31P NMR) and single crystal X-ray crystallography. The thiosemicarbazone ligands behave as uninegative N3,S-chelating ligands in complexes 14. In contrast, pyrrole-2-carbaldehyde thiosemicarbazone (H2ptsc) and salicylaldehyde thiosemicarbazone (H2stsc) invariably formed the complexes [Pd(η3-N4,N3,S-ptsc)(PPh3)] (5) and [Pd(η3–O, N3,S-stsc)(PPh3)] (6), respectively, and the ligands acted as binegative tridentate donors (N4, N3, S, 5; O, N3, S, 6).  相似文献   

11.
Cyclometalated iridium(III) complexes have been synthesized for use in a variety of photophysical applications, including polymer light emitting diodes (PLEDs). A series of new complexes with one electrochemically polymerizable ligand and two phenylpyridine(ppy)-based ligands have been prepared: [Ir(ppy)2L][PF6](1), [Ir(F-mppy)2L][PF6](2), and [Ir(Br-mppy)2L][PF6](3), where L = 3,8-bis(2,2′-bithien-5-yl)-1,10-phenanthroline. The ancillary ppy ligands can be easily varied synthetically to tune emission color of the monomer from blue–green to red. The solid state structure of complex 1 has been obtained by single crystal X-ray crystallography. Conducting polymer materials have been prepared by electropolymerization of monomers and were characterized through XPS analysis and spectroscopic studies.  相似文献   

12.
Diphosphinite ligand, [Ph2POC6H4OPPh2] (1), is obtained by reacting chloro diphenylphosphine, with 1,4-dihydroxy benzene in presence of triethylamine. Treatment of 1 with elemental sulfur or selenium resulted in the formation of bis(chalcogenide) derivatives, [Ph2(E)POC6H4OP(E)Ph2] (2, E = S; 3, E = Se) in almost quantitative yield. The binuclear complex [{(η6-p-cymene)RuCl2}2(Ph2POC6H4OPPh2)] (4) is produced in the reaction between [Ru(η6-p-cymene)Cl2]2 and diphosphinite 1. Similarly the reaction of 1 with [Rh(COD)Cl]2 afforded a binuclear complex [{(COD)RhCl}2(Ph2POC6H4OPPh2)] (5), whereas the macrocyclic complex [{(CO)RhCl}(Ph2POC6H4OPPh2)]2 (6) is isolated in the reaction of 1 with 0.5 equiv of [RhCl(CO)2]2. Compound 1 on treatment with [Pd(COD)Cl2] or [PdCl2(SMe2)2] in 1:1 molar ratio produced the chloro-bridged binuclear complex [{(PPh2O)Pd(μ-Cl)(PPh2OH)}2] (7) through P-O bond cleavage. Treatment of 1 with two equivalents of CuI in dichlormethane/acetonitrile (1:1) afforded a coordination polymer, [{Cu2(μ-I)2(Ph2POC6H4OPPh2)}] (8) in moderate yield. The binuclear complex, [{AuCl}2(μ-Ph2POC6H4OPPh2)] (9) is obtained in the reaction of compound 1 with two equiv of AuCl(SMe2), where the ligand exhibits bridged bidentate mode of coordination. The molecular structures of 1-4, and 6 are determined by X-ray diffraction studies.  相似文献   

13.
Treatment of [Cp′MH(CO)3] (M = Mo, W; Cp′ = η5-C5H5 (Cp), η5-C5Me5 (Cp*)) with 1/8 equiv of S8 in THF, followed by the reaction with dppe under UV irradiation, gave new mono(hydrosulfido) complexes [Cp′M(SH)(CO)(dppe)] (Cp′ = Cp: M = Mo (5), W (6); Cp′ = Cp*: M = Mo (7), W (8); dppe = Ph2PCH2CH2PPh2). When 5 and 6 dissolved in THF were allowed to react with [RhCl(PPh3)3] in the presence of base, heterodinuclear complexes with bridging S and dppe ligands [CpM(CO)(μ-S)(μ-dppe)Rh(PPh3)] (M = Mo (9), W(10)) were obtained. Semi-bridging feature of the CO ligands were also demonstrated. Upon standing in CH2Cl2 solutions, 9 and 10 were converted further to the dimerization products [(CpM)2{Rh(dppe)}22-CO)23-S)2] (M = Mo (13), W). Detailed structures of mononuclear 7 and 8, dinuclear 9 and tetranuclear 13 have been determined by the X-ray diffraction.  相似文献   

14.
The mononuclear high-spin iron(III) complexes [Fe(3-MeOsalpn)Cl(H2O)] (1) and [Fe(3-MeOsalpn)(NCS)(H2O)]·0.5CH3CN (2) and the tetranuclear oxo-bridged compound [{Fe(3-MeOsalpn)Gd(NO3)3}2(μ-O)]·CH3CN (3) [3-MeOsalpn2− = N,N′-propylenebis(3-methoxysalicylideneiminate)] have been prepared and magneto-structurally characterised. The iron(III) ion in 1 and 2 is six-coordinated in a somewhat distorted octahedral surrounding with the two phenolate-oxygens and two imine-nitrogens from the Schiff-base building the equatorial plane and a water (1 and 2) and a chloro (1)/thiocyanate-nitrogen (2) in the axial positions. The neutral mononuclear units of 1 and 2 are assembled into centrosymmetric dinuclear motifs through hydrogen bonds between the axially coordinated water molecule of one iron centre and methoxy-oxygen atoms from the Schiff-base of the adjacent iron atom. The values of the intradimer metal-metal distance within the supramolecular dimers are 4.930 (1) and 4.878 Å (2). The tetranuclear of 3 can be described as two {FeIII(3-MeOsalpn)} units connected through an oxo-bridge, each one hosting a [GdIII(NO3)3] entity in the outer cavity defined by the two phenolate- and two methoxy-oxygen atoms. The values of the intramolecular Fe?Fe and Fe?Gd distances in 3 are 3.502 and 3.606 Å, respectively. The analysis of the magnetic data of 1-3 in the temperature range 1.9-300 K shows the occurrence of weak intermolecular antiferromagnetic interactions in 1 and 2 [J = −0.76 (1) and −0.75 cm−1 (2) with the Hamiltonian defined as H = −JSFe1·SFe1] whereas two intramolecular antiferromagnetic interactions coexist in 3, one very strong between the two iron(III) ions (J1) through the oxo bridge and the other much weaker between the iron(III) and the Gd(III) ions (J2) across the double phenoxo oxygens [J1 = −275 cm−1 and J2 = −3.25 cm−1, the Hamiltonian being defined as H=-J1SFe1·SFe1-J2(SFe1·SGd1+SFe1·SGd1)]. These values are analysed in the light of the structural data and compared with those of related systems.  相似文献   

15.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

16.
Reactions of the ruthenium complexes [RuH(CO)Cl(PPh3)3] and [RuCl2(PPh3)3] with hetero-difunctional S,N-donor ligands 2-mercapto-5-methyl-1,3,5-thiadiazole (HL1), 2-mercapto-4-methyl-5-thiazoleacetic acid (HL2), and 2-mercaptobenzothiazole (HL3) have been investigated. Neutral complexes [RuCl(CO)(PPh3)2(HL1)] (1), [RuCl(CO)(PPh3)2(HL2)] (2), [RuCl(CO)(PPh3)2(HL3)] (3), [Ru(PPh3)2(HL1)2] (4), [RuCl(PPh3)3(HL2)] (5), and [RuCl(PPh3)3(HL3)] (6) imparting κ2-S,N-bonded ligands have been isolated from these reactions. Complexes 1 and 4 reacted with diphenyl-2-pyridylphosphine (PPh2Py) to give neutral κ1-P bonded complexes [RuCl(CO)(κ1-P-PPh2Py)2(HL1)] (7), and [Ru(κ1-P-PPh2Py)2(HL1)2] (8). Complexes 1-8 have been characterized by analytical, spectral (IR, NMR, and electronic absorption) and electrochemical studies. Molecular structures of 1, 2, 4, and 7 have been determined crystallographically. Crystal structure determination revealed coordination of the mercapto-thiadiazole ligands (HL1-HL3) to ruthenium as κ2-N,S-thiolates and presence of rare intermolecular S-S weak bonding interaction in complex 1.  相似文献   

17.
The new cationic mononuclear complexes [(η6-arene)Ru(Ph-BIAN)Cl]BF46-arene = benzene (1), p-cymene (2)], [(η5-C5H5)Ru(Ph-BIAN)PPh3]BF4 (3) and [(η5-C5Me5)M(Ph-BIAN)Cl]BF4 [M = Rh (4), Ir (5)] incorporating 1,2-bis(phenylimino)acenaphthene (Ph-BIAN) are reported. The complexes have been fully characterized by analytical and spectral (IR, NMR, FAB-MS, electronic and emission) studies. The molecular structure of the representative iridium complex [(η5-C5Me5)Ir(Ph-BIAN)Cl]BF4 has been determined crystallographically. Complexes 15 effectively catalyze the reduction of terephthaldehyde in the presence of HCOOH/CH3COONa in water under aerobic conditions and, among these complexes the rhodium complex [(η5-C5Me5)Rh(Ph-BIAN)Cl]BF4 (4) displays the most effective catalytic activity.  相似文献   

18.
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex.  相似文献   

19.
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported.  相似文献   

20.
A new family of three-legged piano stool structured organometallic compounds containing the fragment η5-cyclopentadienyl-ruthenium(II)/iron(II) has been synthesized to evaluate the existence of electronic metal to ligand charge transfer upon coordination of the novel benzodithiophene ligands (BDT), benzo[1,2-b;4,3-b′]dithiophen-2-carbonitrile (L1) and benzo[1,2-b;4,3-b′]dithiophen-2′nitro-2-carbonitrile (L2). All the compounds were characterized by 1H, 13C, 31P NMR, IR and UV-Vis. spectroscopies and their electrochemistry studied by cyclic voltammetry. The X-ray structures of [Ru(η5-C5H5)(PPh3)2(NCC10H5S2)][PF6] (1Ru), [Ru(η5-C5H5)(PPh3)2(NCC10H5S2)][CF3SO3] (1Ru), [Ru(η5-C5H5)(DPPE)(NCC10H5S2)][PF6] 2Ru and [Fe(η5-C5H5)(DPPE)(NCC10H5S2)][PF6] (2Fe) were determined by X-ray diffraction showing centric crystallization on groups and P21/n, respectively.Quadratic hyperpolarizabilities (β) of some of the complexes (2Fe, 2Ru and 3Fe) have been determined by hyper-Rayleigh scattering (HRS) measurements at a fundamental wavelength of 1500 nm, to minimize the probability of fluorescence due to two-photon absorption and to reduce the effect of resonance enhancement, in order to estimate static β values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号